A benchmark for RNA-seq quantification pipelines

被引:114
|
作者
Teng, Mingxiang [1 ,2 ,9 ]
Love, Michael I. [1 ,2 ]
Davis, Carrie A. [3 ]
Djebali, Sarah [4 ,5 ]
Dobin, Alexander [3 ]
Graveley, Brenton R. [6 ]
Li, Sheng [7 ]
Mason, Christopher E. [7 ]
Olson, Sara [6 ]
Pervouchine, Dmitri [4 ,5 ]
Sloan, Cricket A. [8 ]
Wei, Xintao [6 ]
Zhan, Lijun [6 ]
Irizarry, Rafael A. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[3] Cold Spring Harbor Lab, Funct Genom Grp, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[4] Ctr Genom Regulat CRG, Bioinformat & Genom Programme, Doctor Aiguader 88, Barcelona 08003, Spain
[5] UPF, Doctor Aiguader 88, Barcelona 08003, Spain
[6] UConn Hlth Ctr, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
[7] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[8] Stanford Univ, Dept Genet, 300 Pasteur Dr, Stanford, CA 94305 USA
[9] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
来源
GENOME BIOLOGY | 2016年 / 17卷
关键词
GENE-EXPRESSION; CELL; TRANSCRIPTOMES; NORMALIZATION; ABUNDANCE; ALIGNMENT;
D O I
10.1186/s13059-016-0940-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Transcriptomics in the RNA-seq era
    McGettigan, Paul A.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2013, 17 (01) : 4 - 11
  • [12] SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines
    Audoux, Jerome
    Salson, Mikael
    Grosset, Christophe F.
    Beaumeunier, Sacha
    Holder, Jean-Marc
    Commes, Therese
    Philippe, Nicolas
    BMC BIOINFORMATICS, 2017, 18
  • [13] Impact of gene annotation choice on the quantification of RNA-seq data
    Chisanga, David
    Liao, Yang
    Shi, Wei
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [14] Prediction and Quantification of Splice Events from RNA-Seq Data
    Goldstein, Leonard D.
    Cao, Yi
    Pau, Gregoire
    Lawrence, Michael
    Wu, Thomas D.
    Seshagiri, Somasekar
    Gentleman, Robert
    PLOS ONE, 2016, 11 (05):
  • [15] RNA-Seq quantification of the human small airway epithelium transcriptome
    Hackett, Neil R.
    Butler, Marcus W.
    Shaykhiev, Renat
    Salit, Jacqueline
    Omberg, Larsson
    Rodriguez-Flores, Juan L.
    Mezey, Jason G.
    Strulovici-Barel, Yael
    Wang, Guoqing
    Didon, Lukas
    Crystal, Ronald G.
    BMC GENOMICS, 2012, 13
  • [16] Impact of gene annotation choice on the quantification of RNA-seq data
    David Chisanga
    Yang Liao
    Wei Shi
    BMC Bioinformatics, 23
  • [17] RNA-Skim: a rapid method for RNA-Seq quantification at transcript level
    Zhang, Zhaojun
    Wang, Wei
    BIOINFORMATICS, 2014, 30 (12) : 283 - 292
  • [18] CRAM-Seq: Accelerating RNA-Seq Abundance Quantification Using Computational RAM
    Chowdhury, Zamshed I. I.
    Khatamifard, S. Karen
    Resch, Salonik
    Cilasun, Husrev
    Zhao, Zhengyang
    Zabihi, Masoud
    Razaviyayn, Meisam
    Wang, Jian-Ping
    Sapatnekar, Sachin S. S.
    Karpuzcu, Ulya R. R.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (04) : 2055 - 2071
  • [19] Model-based clustering for RNA-seq data
    Si, Yaqing
    Liu, Peng
    Li, Pinghua
    Brutnell, Thomas P.
    BIOINFORMATICS, 2014, 30 (02) : 197 - 205
  • [20] RNA-seq: technical variability and sampling
    McIntyre, Lauren M.
    Lopiano, Kenneth K.
    Morse, Alison M.
    Amin, Victor
    Oberg, Ann L.
    Young, Linda J.
    Nuzhdin, Sergey V.
    BMC GENOMICS, 2011, 12