A benchmark for RNA-seq quantification pipelines

被引:114
|
作者
Teng, Mingxiang [1 ,2 ,9 ]
Love, Michael I. [1 ,2 ]
Davis, Carrie A. [3 ]
Djebali, Sarah [4 ,5 ]
Dobin, Alexander [3 ]
Graveley, Brenton R. [6 ]
Li, Sheng [7 ]
Mason, Christopher E. [7 ]
Olson, Sara [6 ]
Pervouchine, Dmitri [4 ,5 ]
Sloan, Cricket A. [8 ]
Wei, Xintao [6 ]
Zhan, Lijun [6 ]
Irizarry, Rafael A. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[3] Cold Spring Harbor Lab, Funct Genom Grp, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[4] Ctr Genom Regulat CRG, Bioinformat & Genom Programme, Doctor Aiguader 88, Barcelona 08003, Spain
[5] UPF, Doctor Aiguader 88, Barcelona 08003, Spain
[6] UConn Hlth Ctr, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
[7] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[8] Stanford Univ, Dept Genet, 300 Pasteur Dr, Stanford, CA 94305 USA
[9] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
来源
GENOME BIOLOGY | 2016年 / 17卷
关键词
GENE-EXPRESSION; CELL; TRANSCRIPTOMES; NORMALIZATION; ABUNDANCE; ALIGNMENT;
D O I
10.1186/s13059-016-0940-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] RNA-seq: impact of RNA degradation on transcript quantification
    Romero, Irene Gallego
    Pai, Athma A.
    Tung, Jenny
    Gilad, Yoav
    BMC BIOLOGY, 2014, 12
  • [2] Commentary: A Systematic Evaluation of Single Cell RNA-Seq Analysis Pipelines
    Kadota, Koji
    Shimizu, Kentaro
    FRONTIERS IN GENETICS, 2020, 11
  • [3] Improving the Flexibility of RNA-Seq Data Analysis Pipelines
    Phan, John H.
    Wu, Po-Yen
    Wang, May D.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 70 - 73
  • [4] Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be?
    Zhao, Shanrong
    Xi, Li
    Zhang, Baohong
    PLOS ONE, 2015, 10 (11):
  • [5] Computational methods for transcriptome annotation and quantification using RNA-seq
    Garber, Manuel
    Grabherr, Manfred G.
    Guttman, Mitchell
    Trapnell, Cole
    NATURE METHODS, 2011, 8 (06) : 469 - 477
  • [6] A systematic evaluation of single cell RNA-seq analysis pipelines
    Vieth, Beate
    Parekh, Swati
    Ziegenhain, Christoph
    Enard, Wolfgang
    Hellmann, Ines
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Near-optimal probabilistic RNA-seq quantification
    Bray, Nicolas L.
    Pimentel, Harold
    Melsted, Pall
    Pachter, Lior
    NATURE BIOTECHNOLOGY, 2016, 34 (05) : 525 - 527
  • [8] A fast and globally optimal solution for RNA-seq quantification
    Yi, Huiguang
    Lin, Yanling
    Chang, Qing
    Jin, Wenfei
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [9] A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies
    Van, Richard
    Alvarez, Daniel
    Mize, Travis
    Gannavarapu, Sravani
    Chintham Reddy, Lohitha
    Nasoz, Fatma
    Han, Mira V.
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [10] Comprehensive evaluation of RNA-seq analysis pipelines in diploid and polyploid species
    Paya-Milans, Miriam
    Olmstead, James W.
    Nunez, Gerardo
    Rinehart, Timothy A.
    Staton, Margaret
    GIGASCIENCE, 2018, 7 (12):