Dynamic L1-Norm Tucker Tensor Decomposition

被引:16
作者
Chachlakis, Dimitris G. [1 ]
Dhanaraj, Mayur [1 ]
Prater-Bennette, Ashley [2 ]
Markopoulos, Panos P. [1 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] US Air Force, Res Lab, Informat Directorate, Rome, NY 13441 USA
基金
美国国家科学基金会;
关键词
Tensors; Principal component analysis; Signal processing algorithms; Standards; Pollution measurement; Heuristic algorithms; Approximation algorithms; Data analysis; L1-norm; outliers; robust; tensors; tucker decomposition;
D O I
10.1109/JSTSP.2021.3058846
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tucker decomposition is a standard method for processing multi-way (tensor) measurements and finds many applications in machine learning and data mining, among other fields. When tensor measurements arrive in a streaming fashion or are too many to jointly decompose, incremental Tucker analysis is preferred. In addition, dynamic adaptation of bases is desired when the nominal data subspaces change. At the same time, it has been documented that outliers in the data can significantly compromise the performance of existing methods for dynamic Tucker analysis. In this work, we present Dynamic L1-Tucker: an algorithm for dynamic and outlier-resistant Tucker analysis of tensor data. Our experimental studies on both real and synthetic datasets corroborate that the proposed method (i) attains high bases estimation performance, (ii) identifies/rejects outliers, and (iii) adapts to changes of the nominal subspaces.
引用
收藏
页码:587 / 602
页数:16
相关论文
共 62 条
[1]  
Amin MB, 2017, IEEE VTS VEH TECHNOL
[2]  
[Anonymous], 2005, P 31 INT C VERY LARG
[3]  
[Anonymous], CONTEXT AWARE VISION
[4]  
[Anonymous], EXTENDED YALE FACE D
[5]  
[Anonymous], 2018, P 2018 SIAM INT C DA
[6]  
[Anonymous], 1978, OUTLIERS STAT DATA
[7]   Tensor-Based Channel Estimation for Massive MIMO-OFDM Systems [J].
Araujo, Daniel Costa ;
De Almeida, Andre L. F. ;
Da Costa, Joao P. C. L. ;
De Sousa Jr, Rafael T. .
IEEE ACCESS, 2019, 7 :42133-42147
[8]   TTHRESH: Tensor Compression for Multidimensional Visual Data [J].
Ballester-Ripoll, Rafael ;
Lindstrom, Peter ;
Pajarola, Renato .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (09) :2891-2903
[9]  
Baskaran M, 2016, P IEEE HIGH PERF EXT, P1
[10]   MUTAN: Multimodal Tucker Fusion for Visual Question Answering [J].
Ben-younes, Hedi ;
Cadene, Remi ;
Cord, Matthieu ;
Thome, Nicolas .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2631-2639