TOPOLOGICAL BLACK HOLES OF GAUSS-BONNET-YANG-MILLS GRAVITY

被引:10
作者
Dehghani, M. H. [1 ,2 ,3 ]
Bostani, N. [4 ]
Pourhasan, R. [1 ,2 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Phys, Shiraz 71454, Iran
[2] Shiraz Univ, Coll Sci, Biruni Observ, Shiraz 71454, Iran
[3] RIAAM, Maragha, Iran
[4] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2010年 / 19卷 / 07期
基金
中国国家自然科学基金;
关键词
Black holes; Gauss-Bonnet gravity; nonlinear electromagnetic field; PARTICLE-LIKE SOLUTIONS; EINSTEIN; MCKINNON; SOLITONS; ABSENCE;
D O I
10.1142/S0218271810017196
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the asymptotically AdS solutions of Gauss-Bonnet gravity with hyperbolic horizon in the presence of a non-Abelian Yang-Mills field with the gauge semisimple group So(n(n - 1)/2 - 1, 1). We investigate the properties of these solutions and find that the non-negative mass solutions in six and higher dimensions are real everywhere with spacelike singularities. They present black holes with one horizon and have the same causal structure as the Schwarzschild space-time. The solutions in five dimensions or the solutions in higher dimensions with negative mass are not real everywhere. In these cases, one needs a transformation to make the solutions real. These solutions may present a naked singularity, an extreme black hole, a black hole with two horizons, or a black hole with one horizon.
引用
收藏
页码:1107 / 1117
页数:11
相关论文
共 26 条
[1]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[2]   On the existence of soliton and hairy black hole solutions of su(N) Einstein-Yang-Mills theory with a negative cosmological constant [J].
Baxter, J. E. ;
Winstanley, Elizabeth .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (24)
[3]   COLORED BLACK-HOLES [J].
BIZON, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2844-2847
[4]   Stable monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space [J].
Bjoraker, J ;
Hosotani, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (09) :1853-1856
[5]   TOPOLOGICAL BLACK HOLES OF (n+1)-DIMENSIONAL EINSTEIN YANG MILLS GRAVITY [J].
Bostani, N. ;
Dehghani, M. H. .
MODERN PHYSICS LETTERS A, 2010, 25 (18) :1507-1519
[6]   Non-Abelian gravitating solitons with negative cosmological constant [J].
Breitenlohner, P ;
Maison, D ;
Lavrelashvili, G .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (06) :1667-1683
[7]   Particle-like solutions to higher-order curvature Einstein-Yang-Mills systems in d dimensions [J].
Brihaye, Y ;
Chakrabarti, A ;
Tchrakian, DH .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (13) :2765-2783
[8]   Higher order curvature generalizations of Bartnick-McKinnon and coloured black hole solutions in d=5 [J].
Brihaye, Y ;
Chakrabarti, A ;
Hartmann, B ;
Tchrakian, DH .
PHYSICS LETTERS B, 2003, 561 (1-2) :161-173
[9]   Instability proof for Einstein-Yang-Mills solitons and black holes with arbitrary gauge groups [J].
Brodbeck, O ;
Straumann, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) :1414-1433
[10]   ABSENCE OF STATIC EINSTEIN-YANG-MILLS EXCITATIONS IN 3 DIMENSIONS [J].
DESER, S .
CLASSICAL AND QUANTUM GRAVITY, 1984, 1 (01) :L1-L2