Locally modelled regression and functional data

被引:114
作者
Barrientos-Marin, J. [1 ]
Ferraty, F. [2 ]
Vieu, P. [2 ]
机构
[1] Univ Alicante, E-03080 Alicante, Spain
[2] Univ Toulouse 3, Equipe Stat Prob, Inst Math Toulouse, F-31062 Toulouse, France
关键词
functional data; locally modelled regression; functional nonparametric statistics; rates of convergence; spectrometric curves; PRINCIPAL COMPONENT ANALYSIS; LINEAR-REGRESSION;
D O I
10.1080/10485250903089930
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The general framework of this paper deals with the nonparametric regression of a scalar response on a functional variable (i.e. one observation can be a curve, surface, or any other object lying into an infinite-dimensional space). This paper proposes to model local behaviour of the regression operator (i.e. the link between a scalar response and an explanatory functional variable). To this end, one introduces a functional approach in the same spirit as local linear ideas in nonparametric regression. The main advantage of this functional local method is to propose an explicit expression of a kernel-type estimator which makes its computation easy and fast while keeping good predictive performance. Asymptotic properties are stated, and a functional data set illustrates the good behaviour of this functional locally modelled regression method.
引用
收藏
页码:617 / 632
页数:16
相关论文
共 43 条
[31]   Rodeo: Sparse, greedy nonparametric regression [J].
Lafferty, John ;
Wasserman, Larry .
ANNALS OF STATISTICS, 2008, 36 (01) :28-63
[32]  
Li W.V., 2001, Hand- book of Statistics, V19
[33]   Robust principal component analysis for functional data [J].
N. Locantore ;
J. S. Marron ;
D. G. Simpson ;
N. Tripoli ;
J. T. Zhang ;
K. L. Cohen ;
Graciela Boente ;
Ricardo Fraiman ;
Babette Brumback ;
Christophe Croux ;
Jianqing Fan ;
Alois Kneip ;
John I. Marden ;
Daniel Peña ;
Javier Prieto ;
Jim O. Ramsay ;
Mariano J. Valderrama ;
Ana M. Aguilera ;
N. Locantore ;
J. S. Marron ;
D. G. Simpson ;
N. Tripoli ;
J. T. Zhang ;
K. L. Cohen .
Test, 1999, 8 (1) :1-73
[34]  
Martens H.E., 1989, MULTIVARIATE CALIBRA
[35]  
MULLER HG, 1989, J AM STAT ASSOC, V82, P231
[36]   ON NON-PARAMETRIC ESTIMATES OF DENSITY FUNCTIONS AND REGRESSION CURVES [J].
NADARAYA, EA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01) :186-&
[37]  
Ramsay J. O., 2005, Functional Data Analysis
[38]  
Ramsay J.O., 2002, Applied Functional Data Analysis
[39]   VARIATION IN HEIGHT ACCELERATION IN THE FELS GROWTH DATA [J].
RAMSAY, JO ;
ALTMAN, N ;
BOCK, RD .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (01) :89-102
[40]  
RAMSAY JO, 1991, J ROY STAT SOC B MET, V53, P539