Fingerprint Liveness Detection Using Convolutional Neural Networks

被引:228
作者
Nogueira, Rodrigo Frassetto [1 ]
Lotufo, Roberto de Alencar [2 ]
Machado, Rubens Campos [3 ]
机构
[1] NYU, Dept Comp Sci, New York, NY 11209 USA
[2] Univ Estadual Campinas, Dept Elect & Comp Engn, BR-13083852 Campinas, SP, Brazil
[3] Ctr Informat Technol Renato Archer, BR-13069901 Campinas, SP, Brazil
关键词
Fingerprint recognition; machine learning; supervised learning; neural networks; LOCAL BINARY PATTERN; CLASSIFICATION;
D O I
10.1109/TIFS.2016.2520880
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the growing use of biometric authentication systems in the recent years, spoof fingerprint detection has become increasingly important. In this paper, we use convolutional neural networks (CNNs) for fingerprint liveness detection. Our system is evaluated on the data sets used in the liveness detection competition of the years 2009, 2011, and 2013, which comprises almost 50 000 real and fake fingerprints images. We compare four different models: two CNNs pretrained on natural images and fine-tuned with the fingerprint images, CNN with random weights, and a classical local binary pattern approach. We show that pretrained CNNs can yield the state-of-the-art results with no need for architecture or hyperparameter selection. Data set augmentation is used to increase the classifiers performance, not only for deep architectures but also for shallow ones. We also report good accuracy on very small training sets (400 samples) using these large pretrained networks. Our best model achieves an overall rate of 97.1% of correctly classified samples-a relative improvement of 16% in test error when compared with the best previously published results. This model won the first prize in the fingerprint liveness detection competition 2015 with an overall accuracy of 95.5%.
引用
收藏
页码:1206 / 1213
页数:8
相关论文
共 50 条
  • [31] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [32] Fingerprint Liveness Detection Using an Improved CNN With Image Scale Equalization
    Yuan, Chengsheng
    Xia, Zhihua
    Jiang, Leqi
    Cao, Yi
    Wu, Q. M. Jonathan
    Sun, Xingming
    IEEE ACCESS, 2019, 7 : 26953 - 26966
  • [33] Fingerprint liveness detection using gradient-based texture features
    Xia, Zhihua
    Lv, Rui
    Zhu, Yafeng
    Ji, Peng
    Sun, Huiyu
    Shi, Yun-Qing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 381 - 388
  • [34] Automatic Lung Nodule Detection in CT Images Using Convolutional Neural Networks
    Shaukat, Furcian
    Javed, Kamran
    Raja, Gulistan
    Mir, Junaid
    Shahid, Muhammad Laiq Ur Rahman
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (10) : 1364 - 1373
  • [35] Fingerprint matching, spoof and liveness detection: classification and literature review
    Ali, Syed Farooq
    Khan, Muhammad Aamir
    Aslam, Ahmed Sohail
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (01)
  • [36] A Novel Approach for Android Malware Detection and Classification using Convolutional Neural Networks
    Lekssays, Ahmed
    Falah, Bouchaib
    Abufardeh, Sameer
    ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2020, : 606 - 614
  • [37] Ovarian cancer detection using optical coherence tomography and convolutional neural networks
    Schwartz, David
    Sawyer, Travis W.
    Thurston, Noah
    Barton, Jennifer
    Ditzler, Gregory
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11) : 8977 - 8987
  • [38] Fingerprint Liveness Detection in the Presence of Capable Intruders
    Sequeira, Ana F.
    Cardoso, Jaime S.
    SENSORS, 2015, 15 (06) : 14615 - 14638
  • [39] Anomaly Detection in the Molecular Structure of Gallium Arsenide Using Convolutional Neural Networks
    Roche, Timothy
    Wood, Aihua
    Cho, Philip
    Johnstone, Chancellor
    MATHEMATICS, 2023, 11 (15)
  • [40] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Chhabra, Megha
    Ravulakollu, Kiran Kumar
    Kumar, Manoj
    Sharma, Abhay
    Nayyar, Anand
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09) : 6471 - 6497