MOF-Derived CuS@Cu-BTC Composites as High-Performance Anodes for Lithium-Ion Batteries

被引:104
作者
Wang, Ping [1 ,2 ]
Shen, Mengqi [3 ]
Zhou, Hu [1 ]
Meng, Chunfeng [1 ]
Yuan, Aihua [2 ,4 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[3] Brown Univ, Dept Chem, Providence, RI 02912 USA
[4] Jiangsu Univ Sci & Technol, Marine Equipment & Technol Inst, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; CuS@Cu-BTC; lithium-ion batteries; nanocomposites; METAL-ORGANIC FRAMEWORKS; BINDER-FREE ANODE; ONE-POT SYNTHESIS; FACILE SYNTHESIS; COPPER SULFIDE; ELECTROCHEMICAL PERFORMANCE; ELECTRICAL-CONDUCTIVITY; HIERARCHICAL STRUCTURES; ELECTRODE MATERIALS; STORAGE PROPERTIES;
D O I
10.1002/smll.201903522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The CuS(x wt%)@Cu-BTC (BTC = 1,3,5-benzenetricarboxylate; x = 3, 10, 33, 58, 70, 99.9) materials are synthesized by a facile sulfidation reaction. The composites are composed of octahedral Cu-3(BTC)(2)center dot(H2O)(3) (Cu-BTC) with a large specific surface area and CuS with a high conductivity. The as-prepared CuS@Cu-BTC products are first applied as the anodes of lithium-ion batteries (LIBs). The synergistic effect between Cu-BTC and CuS components can not only accommodate the volume change and stress relaxation of electrodes but also facilitate the fast transport of Li ions. Thus, it can greatly suppress the transformation process from Li2S to polysulfides by improving the reversibility of the conversion reaction. Benefiting from the unique structural features, the optimal CuS(70 wt%)@Cu-BTC sample exhibits a remarkably improved electrochemical performance, showing an over-theoretical capacity up to 1609 mAh g(-1) after 200 cycles (100 mA g(-1)) with an excellent rate-capability of approximate to 490 mAh g(-1) at 1000 mA g(-1). The outstanding LIB properties indicate that the CuS(70 wt%)@Cu-BTC sample is a highly desirable electrode material candidate for high-performance LIBs.
引用
收藏
页数:8
相关论文
共 83 条
[1]   Guest-Induced Emergent Properties in Metal-Organic Frameworks [J].
Allendorf, Mark D. ;
Foster, Michael E. ;
Leonard, Francois ;
Stavila, Vitalie ;
Feng, Patrick L. ;
Doty, F. Patrick ;
Leong, Kirsty ;
Ma, Eric Yue ;
Johnston, Scott R. ;
Talin, A. Alec .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (07) :1182-1195
[2]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor [J].
Cao, Yu ;
Wang, Luona ;
Wang, Chengyin ;
Hu, Xiaoya ;
Liu, Yunling ;
Wang, Guoxiu .
ELECTROCHIMICA ACTA, 2019, 317 :341-347
[5]   Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries [J].
Chen, Guang-Yi ;
Wei, Zhi-Yong ;
Jin, Bo ;
Zhong, Xiao-Bin ;
Wang, Heng ;
Zhang, Wan-Xi ;
Liang, Ji-Cai ;
Jiang, Qing .
APPLIED SURFACE SCIENCE, 2013, 277 :268-271
[6]   Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery [J].
Chen, Jun ;
Liu, Yong ;
Minett, Andrew I. ;
Lynam, Carol ;
Wang, Jiazhao ;
Wallace, Gordon G. .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3595-3597
[7]   Cyanide-metal framework derived CoMoO4/Co3O4 hollow porous octahedrons as advanced anodes for high performance lithium ion batteries [J].
Chen, Yingying ;
Wang, Yue ;
Shen, Xiaoping ;
Cai, Rong ;
Yang, Hongxun ;
Xu, Keqiang ;
Yuan, Aihua ;
Ji, Zhenyuan .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) :1048-1056
[8]   Copper-Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction [J].
Cho, Keumnam ;
Han, Sung-Hwan ;
Suh, Myunghyun Paik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (49) :15301-15305
[9]   Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability [J].
Ding, Caihua ;
Su, Dezhi ;
Ma, Wenxian ;
Zhao, Yongjie ;
Yan, Dong ;
Li, Jingbo ;
Jin, Haibo .
APPLIED SURFACE SCIENCE, 2017, 403 :1-8
[10]   Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage [J].
Dong, Yanfeng ;
Liu, Shaohong ;
Liu, Yang ;
Tang, Yongchao ;
Yang, Ting ;
Wang, Xuzhen ;
Wang, Zhiyu ;
Zhao, Zongbin ;
Qiu, Jieshan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (45) :17718-17725