k-Lucas numbers and associated bipartite graphs

被引:57
作者
Lee, GY [1 ]
机构
[1] Hanseo Univ, Dept Math, Seosan 356706, Chung Nam, South Korea
关键词
k-Fibonacci sequence; k-Lucas sequence; 1-factor; permanent;
D O I
10.1016/S0024-3795(00)00204-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a positive integer k greater than or equal to 2, the k-Fibonacci sequence {g(n)((k))} is defined as: g(1)((k)) = ... = g(k-2)((k)) = 0, g(k-1)((k)) = g(k)((k)) = 1 and for n > k greater than or equal to 2, g(n)((k)) = g(n-1)((k)) + g(n-2)((k)) + ... + g(n-k)((k)). Moreover, the k-Lucas sequence {l(n)((k))} is defined as l(n)((k)) = g(n-1)((k)) + g(n+k-1)((k)) for n greater than or equal to 1. In this paper we consider the relationship between g(n)((k)) and l(n)((k)) and 1-factor of a bipartite graph. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 7 条
[1]  
Brualdi R A., 1985, Linear Multilinear Algebra, V17, P5, DOI [10.1080/03081088508817637, DOI 10.1080/03081088508817637]
[2]   CONVEX POLYHEDRA OF DOUBLY STOCHASTIC MATRICES .1. APPLICATIONS OF PERMANENT FUNCTION [J].
BRUALDI, RA ;
GIBSON, PM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (02) :194-230
[3]  
Honsberger R., 1985, MATH GEMS
[4]  
LEE GY, 1995, FIBONACCI QUART, V33, P273
[5]   On the K-generalized Fibonacci matrix Q(k)(*) [J].
Lee, GY ;
Lee, SG ;
Shin, HG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 :73-88
[6]  
MILES EP, 1960, AM MATH MONTHLY, V67, P745
[7]  
MINC H, 1978, PERMANENTS ENCYC MAT