A fractional Fokker-Planck model for anomalous diffusion

被引:21
|
作者
Anderson, Johan [1 ]
Kim, Eun-jin [2 ]
Moradi, Sara [3 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Univ Sheffield, Dept Math & Stat, Sheffield S3 7RH, S Yorkshire, England
[3] Ecole Polytech, CNRS, LPP, UMR7648, F-91128 Palaiseau, France
关键词
TURBULENCE; PLASMA; FOUNDATION; STATISTICS; CHAOS;
D O I
10.1063/1.4904201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Levy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] ANOMALOUS DIFFUSION FOR MULTI-DIMENSIONAL CRITICAL KINETIC FOKKER-PLANCK EQUATIONS
    Fournier, Nicolas
    Tardif, Camille
    ANNALS OF PROBABILITY, 2020, 48 (05): : 2359 - 2403
  • [42] The precise time-dependent solution of the Fokker-Planck equation with anomalous diffusion
    Guo Ran
    Du Jiulin
    ANNALS OF PHYSICS, 2015, 359 : 187 - 197
  • [43] Fractional Fokker-Planck equation for fractal media
    Tarasov, VE
    CHAOS, 2005, 15 (02)
  • [44] Fokker-Planck equation of the fractional Brownian motion
    Di Paola, M.
    Pirrotta, A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 147
  • [45] FRACTIONAL FOKKER-PLANCK EQUATION IN A FRACTAL MEDIUM
    Deng, Shuxian
    Ge, Xinxin
    THERMAL SCIENCE, 2020, 24 (04): : 2589 - 2595
  • [46] Fokker-Planck equation with fractional coordinate derivatives
    Tarasov, Vasily E.
    Zaslavsky, George M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (26) : 6505 - 6512
  • [47] Stochastic stability of fractional Fokker-Planck equation
    Zhang, Yutian
    Chen, Feng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 : 35 - 42
  • [48] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [49] Fractional Fokker-Planck equation, solution, and application
    Barkai, E
    PHYSICAL REVIEW E, 2001, 63 (04):
  • [50] Fractional Fokker-Planck equation for ultraslow kinetics
    Chechkin, AV
    Klafter, J
    Sokolov, IM
    EUROPHYSICS LETTERS, 2003, 63 (03): : 326 - 332