A fractional Fokker-Planck model for anomalous diffusion

被引:21
|
作者
Anderson, Johan [1 ]
Kim, Eun-jin [2 ]
Moradi, Sara [3 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Univ Sheffield, Dept Math & Stat, Sheffield S3 7RH, S Yorkshire, England
[3] Ecole Polytech, CNRS, LPP, UMR7648, F-91128 Palaiseau, France
关键词
TURBULENCE; PLASMA; FOUNDATION; STATISTICS; CHAOS;
D O I
10.1063/1.4904201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Levy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Parameters of the fractional Fokker-Planck equation
    Denisov, S. I.
    Haenggi, P.
    Kantz, H.
    EPL, 2009, 85 (04)
  • [32] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Lv, Longjin
    Qiu, Weiyuan
    Ren, Fuyao
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 619 - 628
  • [33] Fractional driftless Fokker-Planck equation with power law diffusion coefficients
    Südland, N
    Baumann, G
    Nonnenmacher, TF
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2001, : 513 - 528
  • [34] A Mixed FEM for a Time-Fractional Fokker-Planck Model
    Karaa, Samir
    Mustapha, Kassem
    Ahmed, Naveed
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [35] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Longjin Lv
    Weiyuan Qiu
    Fuyao Ren
    Journal of Statistical Physics, 2012, 149 : 619 - 628
  • [36] The fractional Fokker-Planck equation on comb-like model
    Zahran, MA
    Abulwafa, EM
    Elwakil, SA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 323 : 237 - 248
  • [37] On the fractional model of Fokker-Planck equations with two different operator
    Korpinar, Zeliha
    Inc, Mustafa
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2020, 5 (01): : 236 - 248
  • [38] EFFECTIVE DIFFUSION IN THE FOKKER-PLANCK EQUATION
    KOZLOV, SM
    MATHEMATICAL NOTES, 1989, 45 (5-6) : 360 - 368
  • [39] Extreme statistics of anomalous subdiffusion following a fractional Fokker-Planck equation: subdiffusion is faster than normal diffusion
    Lawley, Sean D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [40] Fokker-Planck model of hydrodynamics
    Singh, S. K.
    Ansumali, Santosh
    PHYSICAL REVIEW E, 2015, 91 (03):