A fractional Fokker-Planck model for anomalous diffusion

被引:21
|
作者
Anderson, Johan [1 ]
Kim, Eun-jin [2 ]
Moradi, Sara [3 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Univ Sheffield, Dept Math & Stat, Sheffield S3 7RH, S Yorkshire, England
[3] Ecole Polytech, CNRS, LPP, UMR7648, F-91128 Palaiseau, France
关键词
TURBULENCE; PLASMA; FOUNDATION; STATISTICS; CHAOS;
D O I
10.1063/1.4904201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Levy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [2] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [3] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [4] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [5] Anomalous diffusion: Fractional Fokker-Planck equation and its solutions
    Lenzi, EK
    Mendes, RS
    Fa, KS
    Malacarne, LC
    da Silva, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2179 - 2185
  • [6] Anomalous behaviors in fractional Fokker-Planck equation
    Kim, K
    Kong, YS
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) : 979 - 982
  • [7] Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation
    da Silva, PC
    da Silva, LR
    Lenzi, EK
    Mendes, RS
    Malacarne, LC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 16 - 21
  • [8] Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion
    Abe, S
    PHYSICAL REVIEW E, 2004, 69 (01): : 4
  • [9] Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
    Metzler, Ralf
    Barkai, Eli
    Klafter, Joseph
    Physical Review Letters, 82 (18):
  • [10] Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
    Metzler, R
    Barkai, E
    Klafter, J
    PHYSICAL REVIEW LETTERS, 1999, 82 (18) : 3563 - 3567