A fractional Fokker-Planck model for anomalous diffusion

被引:21
作者
Anderson, Johan [1 ]
Kim, Eun-jin [2 ]
Moradi, Sara [3 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Univ Sheffield, Dept Math & Stat, Sheffield S3 7RH, S Yorkshire, England
[3] Ecole Polytech, CNRS, LPP, UMR7648, F-91128 Palaiseau, France
关键词
TURBULENCE; PLASMA; FOUNDATION; STATISTICS; CHAOS;
D O I
10.1063/1.4904201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Levy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Signature of a universal statistical description for drift-wave plasma turbulence
    Anderson, Johan
    Xanthopoulos, Pavlos
    [J]. PHYSICS OF PLASMAS, 2010, 17 (11)
  • [2] Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics
    Balasis, Georgios
    Daglis, Ioannis A.
    Anastasiadis, Anastasios
    Papadimitriou, Constantinos
    Mandea, Mioara
    Eftaxias, Konstantinos
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (02) : 341 - 346
  • [3] Stable equilibrium based on Levy statistics: Stochastic collision models approach
    Barkai, E
    [J]. PHYSICAL REVIEW E, 2003, 68 (05): : 551041 - 551044
  • [4] Self-similarity properties of the probability distribution function of turbulence-induced particle fluxes at the plasma edge
    Carreras, BA
    van Milligen, B
    Hidalgo, C
    Balbin, R
    Sanchez, E
    Garcia-Cortes, I
    Pedrosa, MA
    Bleuel, J
    Endler, M
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (18) : 3653 - 3656
  • [5] Fluctuation-induced flux at the plasma edge in toroidal devices
    Carreras, BA
    Hidalgo, C
    Sanchez, E
    Pedrosa, MA
    Balbin, R
    GarciaCortes, I
    vanMilligen, B
    Newman, DE
    Lynch, VE
    [J]. PHYSICS OF PLASMAS, 1996, 3 (07) : 2664 - 2672
  • [6] BROWNIAN MOTION, DYNAMICAL FRICTION, AND STELLAR DYNAMICS
    CHANDRASEKHAR, S
    [J]. REVIEWS OF MODERN PHYSICS, 1949, 21 (03) : 383 - 388
  • [7] Nondiffusive transport in plasma turbulence: A fractional diffusion approach
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, VE
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (06)
  • [8] Turbulence and tsallis statistics
    Gotoh, T
    Kraichnan, RH
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) : 231 - 244
  • [9] Khintchine A. Y., 1948, MATH FDN STAT MECH
  • [10] Probability distribution function for self-organization of shear flows
    Kim, Eun-jin
    Liu, Han-Li
    Anderson, Johan
    [J]. PHYSICS OF PLASMAS, 2009, 16 (05)