Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures

被引:29
作者
Gric, Tatjana [1 ,2 ]
Gorodetsky, Andrei [3 ,4 ]
Trofimov, Aleksej [1 ]
Rafailov, Edik [5 ]
机构
[1] Vilnius Gediminas Tech Univ, Dept Elect Syst, Vilnius, Lithuania
[2] Ctr Phys Sci & Technol, Semicond Phys Inst, Vilnius, Lithuania
[3] ITMO Univ, St Petersburg 197101, Russia
[4] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[5] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Absorption; Terahertz photoconductive antenna; Nanostructure; Metamaterial; OPTICAL WAVELENGTHS; SPOOF PLASMONS; METAMATERIALS; SPECTROSCOPY; DRUGS; INDEX; GOLD;
D O I
10.1007/s10762-018-0516-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Herein, we numerically investigate terahertz photoconductive antennas (PCAs) based on optimized plasmonic nanostructures and absorption enhancement in nanocylinders. Plasmonic behavior in the visible to near-infrared light spectrum is achievable due to the metallic nanostructure employment. Herein, we study the absorption enhancement of silver and transparent-conducting oxides (TCO) nanocylinders with different diameters by means of effective medium approximation. This study also reports on the stronger enhancement in the case of TCO nanocylinders. The results show that resonant absorption amplitude and wavelength are dramatically affected by the thickness of the nanostructure as well as by the distances between nanocylinders. The outputs reported here provide a fertile ground for precise control of the nanowire structures for sensing and other enhanced optical applications. It is worthwhile noting that in case of TCO nanocylinders, absorption enhancement for NIR wavelengths, being relevant for present terahertz generation setup, reaches up to fivefold leading to 25-fold increase in terahertz radiation.
引用
收藏
页码:1028 / 1038
页数:11
相关论文
共 50 条
[21]   Terahertz guided mode properties in an internally corrugated plasmonic waveguide [J].
Islam, Maidul ;
Chowdhury, Dibakar Roy ;
Ahmad, Amir ;
Kumar, Gagan .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (05)
[22]   Nanoscale plasmonic antenna difference formation implementation effect on field enhancement [J].
Zarrabi, Ferdows B. ;
Mansouri, Zahra ;
Ahmadian, Rahele ;
Kuhestani, Hamed ;
Rahimi, Maryam .
OPTIK, 2015, 126 (22) :3424-3428
[23]   Computational modeling of plasmonic thin-film terahertz photoconductive antennas [J].
Burford, Nathan ;
El-Shenawee, Magda .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (04) :748-759
[24]   Ultrasensitive Tunable Terahertz Sensor With Graphene Plasmonic Grating [J].
Yan, Fei ;
Li, Li ;
Wang, Ruoxing ;
Tian, Hao ;
Liu, Jianlong ;
Liu, Jianqiang ;
Tian, Fengjun ;
Zhang, Jianzhong .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (04) :1103-1112
[25]   Development of optimized nanogap plasmonic substrate for improved SERS enhancement [J].
Perumal, Jayakumar ;
Gong, Tianxun ;
Dinish, U. S. ;
Buddharaju, Kavitha Devi ;
Lo Guo-Qiang, Patrick ;
Olivo, Malini .
AIP ADVANCES, 2017, 7 (05)
[26]   Tunable Terahertz Filters Based on Graphene Plasmonic All-Dielectric Metasurfaces [J].
Jiang, Li-Hua ;
Wang, Faqiang ;
Liang, Ruisheng ;
Wei, Zhongchao ;
Meng, Hongyun ;
Dong, Hongguang ;
Cen, Haifeng ;
Wang, Ling ;
Qin, Shijie .
PLASMONICS, 2018, 13 (02) :525-530
[27]   Hybrid Plasmonic Nanostructures with Unconventional Nonlinear Optical Properties [J].
Zhang, Yong ;
Wang, Jing Jing ;
Ballantine, Kyle E. ;
Eastham, Paul R. ;
Blau, Werner J. .
ADVANCED OPTICAL MATERIALS, 2014, 2 (04) :331-337
[28]   Tunable plasmonic terahertz filter based on a suspended monolayer graphene on a ring resonator [J].
Davoudi, Iman ;
Ghayour, Rahim ;
Barati, Ramin .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
[29]   Terahertz radiation processes in critically coupled graphene plasmonic nanostructures [J].
Li, Yuyu ;
Paiella, Roberto .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (15)
[30]   Terahertz conductivity and coupling between geometrical and plasmonic resonances in nanostructures [J].
Kucharik, Jiri ;
Nemec, Hynek ;
Ostatnicky, Tomas .
PHYSICAL REVIEW B, 2019, 99 (03)