Generalized Wasserstein Distance and Weak Convergence of Sublinear Expectations

被引:8
作者
Li, Xinpeng [1 ,2 ]
Lin, Yiqing [3 ]
机构
[1] Shandong Univ, Inst Adv Res, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[3] Univ Wien, Fak Math, A-1090 Vienna, Austria
基金
中国博士后科学基金; 奥地利科学基金会; 欧洲研究理事会;
关键词
Sublinear expectations; Weak convergence; Kantorovich-Rubinstein duality formula; Wasserstein distance; VOLATILITY;
D O I
10.1007/s10959-015-0651-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we define the generalized Wasserstein distance for sets of Borel probability measures and demonstrate that weak convergence of sublinear expectations can be characterized by means of this distance.
引用
收藏
页码:581 / 593
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[2]  
[Anonymous], 2010, ARXIV10024546
[3]   Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths [J].
Denis, Laurent ;
Hu, Mingshang ;
Peng, Shige .
POTENTIAL ANALYSIS, 2011, 34 (02) :139-161
[4]   Ambiguous Volatility and Asset Pricing in Continuous Time [J].
Epstein, Larry G. ;
Ji, Shaolin .
REVIEW OF FINANCIAL STUDIES, 2013, 26 (07) :1740-1786
[5]  
Huber P., 2011, ROBUST STAT
[6]  
Lebedev A., 1991, SIB MAT ZH, V33, P94
[7]  
Peng S., 2010, ARXIV10062541
[8]  
Peng S., 2008, ARXIV08032656V1
[9]  
Sion M., 1958, PAC J MATH, V8, P171, DOI 10.2140/pjm.1958.8.171
[10]  
Villani C., 2008, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences