Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation

被引:138
作者
Canet, Leonie [1 ]
Chate, Hugues [2 ]
Delamotte, Bertrand [3 ]
Wschebor, Nicolas [4 ]
机构
[1] Univ Grenoble 1, CNRS, UMR 5493, LPMMC, F-38042 Grenoble, France
[2] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[3] Univ Paris 06, CNRS, UMR 7600, LPTMC, F-75252 Paris, France
[4] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
关键词
UPPER CRITICAL DIMENSION; DYNAMIC EXPONENT; GROWTH DYNAMICS; KPZ EQUATION; INTERFACES; DEPOSITION; EXPANSION;
D O I
10.1103/PhysRevLett.104.150601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a simple approximation of the nonperturbative renormalization group designed for the Kardar-Parisi-Zhang equation and show that it yields the correct phase diagram, including the strong-coupling phase with reasonable scaling exponent values in physical dimensions. We find indications of a possible qualitative change of behavior around d = 4. We discuss how our approach can be systematically improved.
引用
收藏
页数:4
相关论文
共 40 条
[1]   Solutions of renormalization-group flow equations with full momentum dependence [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2009, 80 (03)
[2]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[3]   Upper critical dimension of the Kardar-Parisi-Zhang equation [J].
Bhattacharjee, JK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05) :L93-L96
[4]   A new method to solve the non-perturbative renormalization group equations [J].
Blaizot, JP ;
Méndez-Galain, R ;
Wschebor, N .
PHYSICS LETTERS B, 2006, 632 (04) :571-578
[5]   SELF-CONSISTENT APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION [J].
BOUCHAUD, JP ;
CATES, ME .
PHYSICAL REVIEW E, 1993, 47 (03) :R1455-R1458
[6]   Nonperturbative fixed point in a nonequilibrium phase transition -: art. no. 100601 [J].
Canet, L ;
Chaté, H ;
Delamotte, B ;
Dornic, I ;
Muñoz, MA .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[7]   Quantitative phase diagrams of branching and annihilating random walks -: art. no. 255703 [J].
Canet, L ;
Chaté, H ;
Delamotte, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :255703-1
[8]   Nonperturbative renormalization-group study of reaction-diffusion processes -: art. no. 195703 [J].
Canet, L ;
Delamotte, B ;
Deloubrière, O ;
Wschebor, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :195703-1
[9]   Optimization of the derivative expansion in the nonperturbative renormalization group [J].
Canet, L ;
Delamotte, B ;
Mouhanna, D ;
Vidal, J .
PHYSICAL REVIEW D, 2003, 67 (06)
[10]  
Canet L., ARXIVCONDMAT0509541