DUAL KAPPA POINCARE ALGEBRA

被引:3
作者
Magpantay, Jose A. [1 ,2 ]
机构
[1] Univ Philippines, Natl Inst Phys, Quezon City 1101, Philippines
[2] Univ Philippines, Technol Management Ctr, Quezon City 1101, Philippines
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2010年 / 25卷 / 09期
关键词
Lorentz; Poincare and phase space algebras; DSR; kappa Poincare algebra; DOUBLY SPECIAL RELATIVITY; SPACE;
D O I
10.1142/S0217751X1004807X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We show a different modification of Poincare algebra that also preserves Lorentz algebra. The change begins with how boosts affect space-time in a way similar to how they affect the momenta in kappa Poincare algebra; hence the term "dual kappa Poincare algebra." Since by construction the new space-time commutes, it follows that the momenta co-commute. Proposing a space-time coalgebra that is similar to the momentum coproduct in the bicrossproduct basis of kappa Poincare algebra, we derive the phase space algebra using the Heisenberg double construction. The phase space variables of the dual kappa Poincare algebra are then related to SR phase space variables. From these relations, we complete the dual kappa Poincare algebra by deriving the action of rotations and boosts on the momenta.
引用
收藏
页码:1881 / 1890
页数:10
相关论文
共 50 条
  • [1] Generalized Dirac oscillator with κ-Poincare algebra
    Wu, Jing
    Long, Chao-Yun
    Wu, Zheng-Xue
    Long, Zheng-Wen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2020, 29 (05):
  • [2] PROJECTIVE GEOMETRY OF THE POINCARE DISK OF A C*-ALGEBRA
    Andruchow, E.
    Corach, G.
    Recht, L.
    JOURNAL OF OPERATOR THEORY, 2023, 89 (01) : 155 - 182
  • [3] A group theoretic description of the κ-Poincare Hopf algebra
    Arzano, Michele
    Kowalski-Glikman, Jerzy
    PHYSICS LETTERS B, 2022, 835
  • [4] DIFFERENTIAL STRUCTURE ON κ-MINKOWSKI SPACE, AND κ-POINCARE ALGEBRA
    Meljanac, Stjepan
    Kresic-Juric, Sasa
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (20): : 3385 - 3402
  • [5] Classical velocity in κ-deformed Poincare algebra and a maximum acceleration
    Rama, SK
    MODERN PHYSICS LETTERS A, 2003, 18 (07) : 527 - 536
  • [6] Nonrelativistic Contraction of a Canonically Deformed Super-Poincare Hopf Algebra
    Daszkiewicz, Marcin
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (01) : 23 - 32
  • [7] Kappa Snyder deformations of Minkowski spacetime, realizations, and Hopf algebra
    Meljanac, S.
    Meljanac, D.
    Samsarov, A.
    Stojic, M.
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [8] κ-Poincare Hopf algebra and Hopf algebroid structure of phase space from twist
    Juric, Tajron
    Meljanac, Stjepan
    Strajn, Rina
    PHYSICS LETTERS A, 2013, 377 (38) : 2472 - 2476
  • [9] QUASI-MULTIPLIERS OF THE DUAL OF A BANACH ALGEBRA
    Adib, M.
    Riazi, A.
    Bracic, J.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (02): : 6 - 14
  • [10] Twisting and κ-Poincare
    Borowiec, Andrzej
    Lukierski, Jerzy
    Pachol, Anna
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (40)