Modeling and characterization of metal-semiconductor-metal-based source-drain contacts in amorphous InGaZnO thin film transistors

被引:46
作者
Lee, Sangwon [1 ]
Park, Jun-Hyun [1 ]
Jeon, Kichan [1 ]
Kim, Sungchul [1 ]
Jeon, Yongwoo [1 ]
Kim, Dae Hwan [1 ]
Kim, Dong Myong [1 ]
Park, Jae Chul [2 ]
Kim, Chang Jung [2 ]
机构
[1] Kookmin Univ, Sch Elect Engn, Seoul 136702, South Korea
[2] Samsung Adv Inst Technol, Semicond Lab, Yongin 446712, Gyeonggi Do, South Korea
关键词
OXIDE; RESISTANCE;
D O I
10.1063/1.3364134
中图分类号
O59 [应用物理学];
学科分类号
摘要
Due to the inherent property of large contact and parasitic resistances in amorphous InGaZnO (a-IGZO) thin film transistors (TFTs), a metal-semiconductor-metal (MSM) structure is a key element in a-IGZO TFTs. Therefore, voltage drops across resistances and MSM structure should be fully considered in the modeling and characterization of a-IGZO TFTs. A physics-based semiempirical model for the current-voltage characteristics of the MSM structure for the source-channel-drain contact in a-IGZO TFTs is proposed and verified with experimental results. The proposed model for the current in a-IGZO MSM structures includes a thermionic field emission [J(TFE)proportional to exp(V-R,(Schottky)/V-o)] and trap-assisted generation (J(gen)proportional to root V-R,V-Schottky) in addition to the thermionic emission current (J(S): Independent of the bias) under reverse bias. Experimental result suggests that electrical characteristics of the MSM structure depend not only on the Schottky barrier but also on the bulk property of the a-IGZO active layer. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3364134]
引用
收藏
页数:3
相关论文
共 11 条
[1]   Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics [J].
Jeon, Kichan ;
Kim, Changjung ;
Song, Ihun ;
Park, Jaechul ;
Kim, Sunil ;
Kim, Sangwook ;
Park, Youngsoo ;
Park, Jun-Hyun ;
Lee, Sangwon ;
Kim, Dong Myong ;
Kim, Dae Hwan .
APPLIED PHYSICS LETTERS, 2008, 93 (18)
[2]  
Jeong JK, 2008, SID INT SYMP DIG TEC, V39, P1
[3]   Extraction of interface states at emitter-base heterojunctions in AlGaAs/GaAs heterostructure bipolar transistors using sub-bandgap photonic excitation [J].
Kim, Se Woon ;
Roh, Kang Seob ;
Seo, Seung Hwan ;
Kim, Kwan Young ;
Kang, Gu Cheol ;
Lee, Sunyeong ;
Choi, Chang Min ;
Park, So Ra ;
Park, Jun Hyun ;
Chun, Ki Chan ;
Song, Kwan Jae ;
Kim, Dae Hwan ;
Kim, Dong Myong .
MICROELECTRONICS RELIABILITY, 2008, 48 (03) :382-388
[4]   World's largest (15-inch) XGA AMLCD panel using IGZO oxide TFT [J].
Lee, Je-hun ;
Kim, Do-hyun ;
Yang, Dong-ju ;
Hong, Sun-young ;
Yoon, Kap-soo ;
Hong, Pil-soon ;
Jeong, Chang-oh ;
Park, Hong-sik ;
Kim, Shi Yul ;
Lim, Soon Kwon ;
Kim, Sang Soo ;
Son, Kyoung-seok ;
Kim, Tae-sang ;
Kwon, Jang-yeon ;
Lee, Sang-yoon .
2008 SID INTERNATIONAL SYMPOSIUM, DIGEST OF TECHNICAL PAPERS, VOL XXXIX, BOOKS I-III, 2008, 39 :625-+
[5]   Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J].
Nomura, K ;
Ohta, H ;
Takagi, A ;
Kamiya, T ;
Hirano, M ;
Hosono, H .
NATURE, 2004, 432 (7016) :488-492
[6]   Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering [J].
Orikasa, Yuki ;
Hayashi, Naoaki ;
Muranaka, Shigetoshi .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (11)
[7]   Source/drain series-resistance effects in amorphous gallium-indium zinc-oxide thin film transistors [J].
Park, Jaechul ;
Kim, Changjung ;
Kim, Sunil ;
Song, Hun ;
Kim, Sangwook ;
Kang, Donghun ;
Lim, Hyuck ;
Yin, Huaxiang ;
Jung, Ranju ;
Lee, Eunha ;
Lee, Jaecheol ;
Kwon, Kee-Won ;
Park, Youngsoo .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (08) :879-881
[8]  
Rhoderick E.H., 1980, METAL SEMICONDUCTOR
[9]   Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors [J].
Suresh, Arun ;
Wellenius, Patrick ;
Dhawan, Anuj ;
Muth, John .
APPLIED PHYSICS LETTERS, 2007, 90 (12)
[10]  
Sze S.M., 2013, SEMICONDUCTOR DEVICE