High-efficiency cooling via the monolithic integration of copper on electronic devices

被引:53
|
作者
Gebrael, Tarek [1 ]
Li, Jiaqi [1 ]
Gamboa, Arielle R. [1 ]
Ma, Jingcheng [1 ]
Schaadt, Joseph [2 ]
Horowitz, Logan [2 ]
Pilawa-Podgurski, Robert [2 ]
Miljkovic, Nenad [1 ,3 ,4 ,5 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[5] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka, Japan
基金
美国国家科学基金会;
关键词
CAPACITOR MULTILEVEL INVERTER; THERMAL MANAGEMENT; HEAT SPREADER; DEPOSITION; DESIGN; FILMS;
D O I
10.1038/s41928-022-00748-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Copper can be conformally coated over entire electrical circuits and systems for thermal dissipation using an intermediate polymer coating that provides electrical isolation. Electrification is critical to decarbonizing society, but managing increasing power densification in electrical systems will require the development of new thermal management technologies. One approach is to use monolithic-metal-based heat spreaders that reduce thermal resistance and temperature fluctuation in electronic devices. However, their electrical conductivity makes them challenging to implement. Here we report co-designed electronic systems that monolithically integrate copper directly on electronic devices for heat spreading and temperature stabilization. The approach first coats the devices with an electrical insulating layer of poly(2-chloro-p-xylylene) (parylene C) and then a conformal coating of copper. This allows the copper to be in close proximity to the heat-generating elements, eliminating the need for thermal interface materials and providing improved cooling performance compared with existing technologies. We test the approach with gallium nitride power transistors, and show that it can be used in systems operating at up to 600 V and provides a low junction-to-ambient specific thermal resistance of 2.3 cm(2) K W-1 in quiescent air and 0.7 cm(2) K W-1 in quiescent water.
引用
收藏
页码:394 / 402
页数:9
相关论文
共 50 条
  • [1] High-efficiency cooling via the monolithic integration of copper on electronic devices
    Tarek Gebrael
    Jiaqi Li
    Arielle R. Gamboa
    Jingcheng Ma
    Joseph Schaadt
    Logan Horowitz
    Robert Pilawa-Podgurski
    Nenad Miljkovic
    Nature Electronics, 2022, 5 : 394 - 402
  • [2] High-Efficiency Cement Cooling
    Sutherland, Nick
    Anbari, Reda
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2014, 50 (06) : 4312 - 4318
  • [3] High-efficiency solar cooling
    Gordon, JM
    Ng, KC
    SOLAR ENERGY, 2000, 68 (01) : 23 - 31
  • [4] HIGH-EFFICIENCY MONOLITHIC GAAS IMPATT DIODES
    BAYRAKTAROGLU, B
    SHIH, HD
    ELECTRONICS LETTERS, 1985, 21 (07) : 259 - 260
  • [5] Monolithic columns for high-efficiency HPLC separations
    Ikegami, T
    Tanaka, N
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2004, 8 (05) : 527 - 533
  • [6] High-efficiency power and data transmission system for biomedical implanted electronic devices
    Universite Lyon, Lyon, France
    Meas Sci Technol, 2 (192-201):
  • [7] A high-efficiency power and data transmission system for biomedical implanted electronic devices
    Hamici, Z
    Itti, R
    Champier, J
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1996, 7 (02) : 192 - 201
  • [8] High-efficiency red electrophosphorescence devices
    Adachi, C
    Baldo, MA
    Forrest, SR
    Lamansky, S
    Thompson, ME
    Kwong, RC
    APPLIED PHYSICS LETTERS, 2001, 78 (11) : 1622 - 1624
  • [9] Microchip devices for high-efficiency separations
    Culbertson, CT
    Jacobson, SC
    Ramsey, JM
    ANALYTICAL CHEMISTRY, 2000, 72 (23) : 5814 - 5819
  • [10] Monolithic silica columns for high-efficiency chromatographic separations
    Tanaka, N
    Kobayashi, H
    Ishizuka, N
    Minakuchi, H
    Nakanishi, K
    Hosoya, K
    Ikegami, T
    JOURNAL OF CHROMATOGRAPHY A, 2002, 965 (1-2) : 35 - 49