The conditions Int(R)⊆RS[X] and Int(RS)=Int(R)S for integer-valued polynomials

被引:10
作者
Rush, DE [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
D O I
10.1016/S0022-4049(96)00107-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be an integral domain with quotient field K and let Int(R) = {f is an element of K[X] \ f(R) subset of or equal to R}. In this note we determine when Int(R) = R[X] for an arbitrary integral domain R. More generally we determine when Int(R) subset of or equal to R-S[X] for a multiplicative subset S of R. In the case that R is an almost Dedekind domain with finite residue fields we also determine when Int(Rs)= Int(li)s for each multiplicative subset S of R, and show that if this holds then finitely generated ideals of Int(R) can be generated by two elements. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 22 条
[1]  
ARNOLD JT, 1967, J SCI HIROSHIMA U A, V1, P131
[2]  
Bourbaki N., 1972, COMMUTATIVE ALGEBRA
[3]   THE RING OF INTEGER-VALUED POLYNOMIALS OF A SEMILOCAL PRINCIPAL-IDEAL DOMAIN [J].
BREWER, J ;
KLINGLER, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 157 :141-145
[4]   THEOREM ON IDEALS IN PRUFER RINGS OF INTEGRAL-VALUED POLYNOMIALS [J].
BRIZOLIS, D .
COMMUNICATIONS IN ALGEBRA, 1979, 7 (10) :1065-1077
[5]  
CAHEN PJ, 1971, B SCI MATH, V95, P295
[6]   INTEGER-VALUED POLYNOMIALS, PRUFER DOMAINS, AND LOCALIZATION [J].
CHABERT, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) :1061-1073
[7]  
CHABERT JL, 1971, B SOC MATH FR, V99, P273
[8]   A PRUFER RING [J].
CHABERT, JL .
JOURNAL OF ALGEBRA, 1987, 107 (01) :1-16
[9]   THE NOETHERIAN PROPERTY IN RINGS OF INTEGER-VALUED POLYNOMIALS [J].
GILMER, R ;
HEINZER, W ;
LANTZ, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :187-199
[10]   THE RING OF INTEGER-VALUED POLYNOMIALS OF A DEDEKIND DOMAIN [J].
GILMER, R ;
HEINZER, W ;
LANTZ, D ;
SMITH, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (03) :673-681