Extremal self-dual codes with an automorphism of order 2

被引:42
作者
Buyuklieva, S [1 ]
Boukliev, I
机构
[1] Univ Veliko Tarnavo, Fac Math & Informat, Veliko Tarnovo, Bulgaria
[2] Bulgarian Acad Sci, Math Inst, Veliko Tarnovo, Bulgaria
关键词
automorphism; heuristic algorithm; self-dual codes;
D O I
10.1109/18.651059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method to design binary self-dual codes with an automorphism of order-two without fixed points is presented. Extremal self-dual codes with lengths 40, 42, 44, 54, 58, 68 are constructed. Many of them have weight enumerators for which extremal codes were previously not known to exist.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 18 条
[1]   WEIGHT ENUMERATORS OF SELF-DUAL CODES [J].
BRUALDI, RA ;
PLESS, VS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1222-1225
[2]   EXTREMAL DOUBLY-EVEN CODES OF LENGTH 40 DERIVED FROM HADAMARD-MATRICES OF ORDER 20 [J].
BUSSEMAKER, FC ;
TONCHEV, VD .
DISCRETE MATHEMATICS, 1990, 82 (03) :317-321
[3]  
BUYUKLIEVA S, IN PRESS DES CODES C
[4]  
BUYUKLIEVA S, 1995, P OPT COD REL TOP BU, P29
[5]   A NEW UPPER BOUND ON THE MINIMAL DISTANCE OF SELF-DUAL CODES [J].
CONWAY, JH ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) :1319-1333
[6]  
DOUGHERTY ST, EXTREMAL DOBLY EVEN
[7]  
GULLIVER TA, CLASSIFICATION EXTRE
[8]  
Harada M, 1995, LECT NOTES COMPUT SC, V948, P279
[9]  
HARADA M, 1995, MATH J OKAYAMA U, V37, P1
[10]  
Harada M, 1996, DESIGN CODE CRYPTOGR, V8, P1