Verma modules over generalized Virasoro algebras Vir[G]

被引:28
作者
Hu, J [1 ]
Wang, XD
Zhao, KM
机构
[1] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100080, Peoples R China
[3] Qingdao Univ, Dept Math, Qingdao 266071, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0022-4049(02)00173-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field of characteristic 0, not necessarily algebraically closed, and G be an additive subgroup of F. For any total order on G which is compatible with the group addition, and for any, (c) over dot is an element of F, a Verma module (M) over tilde((c) over dot, h) over the generalized Virasoro algebra Vir[G] is defined. In the present paper, the irreducibility of Verma modules (M) over tilde((c) over dot, h) is completely determined. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 17 条
[1]  
[Anonymous], ALGEBRAS
[2]  
Dokovic DZ, 1998, T AM MATH SOC, V350, P643
[3]  
Futorny V., 1997, QUEENS PAPERS PURE A, V106
[4]  
Kac V. G., 1987, Adv. Ser. Math. Phys., V2
[5]   CLASSIFICATION OF HARISH-CHANDRA MODULES OVER THE VIRASORO LIE-ALGEBRA [J].
MATHIEU, O .
INVENTIONES MATHEMATICAE, 1992, 107 (02) :225-234
[6]   Verma modules over generalized Witt algebras [J].
Mazorchuk, V .
COMPOSITIO MATHEMATICA, 1999, 115 (01) :21-35
[7]  
Mazorchuk V, 2000, MATH NACHR, V209, P171, DOI 10.1002/(SICI)1522-2616(200001)209:1<171::AID-MANA171>3.3.CO
[8]  
2-2
[9]   New simple infinite-dimensional Lie algebras of characteristic 0 [J].
Osborn, JM .
JOURNAL OF ALGEBRA, 1996, 185 (03) :820-835
[10]   Simple Lie algebras of Witt type [J].
Passman, DS .
JOURNAL OF ALGEBRA, 1998, 206 (02) :682-692