Network-based visualisation reveals new insights into transposable element diversity

被引:4
作者
Schneider, Lisa [1 ,2 ,3 ]
Guo, Yi-Ke [3 ,4 ]
Birch, David [3 ]
Sarkies, Peter [1 ,2 ]
机构
[1] MRC London Inst Med Sci, London, England
[2] Imperial Coll, Inst Clin Sci, London, England
[3] Imperial Coll, Data Sci Inst, London, England
[4] Hong Kong Baptist Univ, Kowloon, Hong Kong, Peoples R China
基金
英国医学研究理事会;
关键词
epigenetics; evolution; networks; piRNAs; transposable elements; DNA METHYLATION PATTERNS; REPETITIVE ELEMENTS; REPBASE; SEARCH; PIRNAS; PLANTS;
D O I
10.15252/msb.20209600
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transposable elements (TEs) are widespread across eukaryotic genomes, yet their content varies widely between different species. Factors shaping the diversity of TEs are poorly understood. Understanding the evolution of TEs is difficult because their sequences diversify rapidly and TEs are often transferred through non-conventional means such as horizontal gene transfer. We developed a method to track TE evolution using network analysis to visualise TE sequence and TE content across different genomes. We illustrate our method by first using a monopartite network to study the sequence evolution of Tc1/mariner elements across focal species. We identify a connection between two subfamilies associated with convergent acquisition of a domain from a protein-coding gene. Second, we use a bipartite network to study how TE content across species is shaped by epigenetic silencing mechanisms. We show that the presence of Piwi-interacting RNAs is associated with differences in network topology after controlling for phylogenetic effects. Together, our method demonstrates how a network-based approach can identify hitherto unknown properties of TE evolution across species.
引用
收藏
页数:12
相关论文
共 52 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Repbase Update, a database of repetitive elements in eukaryotic genomes [J].
Bao, Weidong ;
Kojima, Kenji K. ;
Kohany, Oleksiy .
MOBILE DNA, 2015, 6
[3]  
Bastian M, 2009, INT AAAI C WEBL SOC, V8, P361, DOI DOI 10.13140/2.1.1341.1520
[4]   LINE-1 Retrotransposition Activity in Human Genomes [J].
Beck, Christine R. ;
Collier, Pamela ;
Macfarlane, Catriona ;
Malig, Maika ;
Kidd, Jeffrey M. ;
Eichler, Evan E. ;
Badge, Richard M. ;
Moran, John V. .
CELL, 2010, 141 (07) :1159-U110
[5]  
Bessereau Jean-Louis, 2006, WormBook, P1
[6]   Diversity of cytosine methylation across the fungal tree of life [J].
Bewick, Adam J. ;
Hofmeister, Brigitte T. ;
Powers, Rob A. ;
Mondo, Stephen J. ;
Grigoriev, Igor, V ;
James, Timothy Y. ;
Stajich, Jason E. ;
Schmitz, Robert J. .
NATURE ECOLOGY & EVOLUTION, 2019, 3 (03) :479-+
[7]   Evolution of DNA Methylation across Insects [J].
Bewick, Adam J. ;
Vogel, Kevin J. ;
Moore, Allen J. ;
Schmitz, Robert J. .
MOLECULAR BIOLOGY AND EVOLUTION, 2017, 34 (03) :654-665
[8]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[9]   DNA METHYLATION AND THE FREQUENCY OF CPG IN ANIMAL DNA [J].
BIRD, AP .
NUCLEIC ACIDS RESEARCH, 1980, 8 (07) :1499-1504
[10]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,