A Hierarchical Graph Learning Model for Brain Network Regression Analysis

被引:3
作者
Tang, Haoteng [1 ]
Guo, Lei [1 ]
Fu, Xiyao [1 ]
Qu, Benjamin [2 ]
Ajilore, Olusola [3 ]
Wang, Yalin [4 ]
Thompson, Paul M. [5 ]
Huang, Heng [1 ]
Leow, Alex D. [3 ]
Zhan, Liang [1 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15260 USA
[2] Mission San Jose High Sch, Fremont, CA USA
[3] Univ Illinois, Dept Psychiat, Chicago, IL USA
[4] Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ USA
[5] Univ Southern Calif, Imaging Genet Ctr, Los Angeles, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
multimodal brain networks; human connectome project; graph learning; interpretable AI; adult self-report score; POSTERIOR CINGULATE CORTEX; PREDICTION; ATTENTION; ORGANIZATION; CONNECTOMES; CHILDREN;
D O I
10.3389/fnins.2022.963082
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain networks have attracted increasing attention due to the potential to better characterize brain dynamics and abnormalities in neurological and psychiatric conditions. Recent years have witnessed enormous successes in deep learning. Many AI algorithms, especially graph learning methods, have been proposed to analyze brain networks. An important issue for existing graph learning methods is that those models are not typically easy to interpret. In this study, we proposed an interpretable graph learning model for brain network regression analysis. We applied this new framework on the subjects from Human Connectome Project (HCP) for predicting multiple Adult Self-Report (ASR) scores. We also use one of the ASR scores as the example to demonstrate how to identify sex differences in the regression process using our model. In comparison with other state-of-the-art methods, our results clearly demonstrate the superiority of our new model in effectiveness, fairness, and transparency.
引用
收藏
页数:12
相关论文
共 99 条
[1]  
Achenbach T. M., 2003, MANUAL ASEBA ADULT F
[2]   Constructing the resting state structural con nectome [J].
Ajilore, Olusola ;
Zhan, Liang ;
GadElkarim, Johnson ;
Zhang, Aifeng ;
Feusner, Jamie D. ;
Yang, Shaolin ;
Thompson, Paul M. ;
Kumar, Anand ;
Leow, Alex .
FRONTIERS IN NEUROINFORMATICS, 2013, 7
[3]  
[Anonymous], 2018, Advances in Neural Information Processing Systems
[4]   Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings [J].
Bathelt, Joe ;
O'Reilly, Helen ;
Clayden, Jonathan D. ;
Cross, J. Helen ;
de Haan, Michelle .
NEUROIMAGE, 2013, 82 :595-604
[5]   Robust prediction of individual creative ability from brain functional connectivity [J].
Beaty, Roger E. ;
Kenett, Yoed N. ;
Christensen, Alexander P. ;
Rosenberg, Monica D. ;
Benedek, Mathias ;
Chen, Qunlin ;
Fink, Andreas ;
Qiu, Jiang ;
Kwapil, Thomas R. ;
Kane, Michael J. ;
Silvia, Paul J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (05) :1087-1092
[6]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[7]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[8]  
Brown C.J., 2017, P INT C MED IM COMP, P84
[9]   The precuneus: a review of its functional anatomy and behavioural correlates [J].
Cavanna, AE ;
Trimble, MR .
BRAIN, 2006, 129 :564-583
[10]  
Chen DL, 2020, AAAI CONF ARTIF INTE, V34, P3438