On global asymptotic stability of systems of Lienard type

被引:31
作者
Sugie, J [1 ]
Chen, DL
Matsunaga, H
机构
[1] Shimane Univ, Dept Math & Comp Sci, Matsue, Shimane 690, Japan
[2] Shinshu Univ, Dept Math, Matsumoto, Nagano 390, Japan
[3] Univ Osaka Prefecture, Dept Math Sci, Sakai, Osaka 599, Japan
关键词
D O I
10.1006/jmaa.1997.5773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new necessary and sufficient conditions under which the zero solution of Lienard-type systems is globally asymptotically stable. To this end, we examine (i) whether all trajectories intersect the vertical isocline or not and (ii) whether all trajectories tend to the origin or not. We also apply our results to a pseudolinear system. (C) 1998 Academic Press.
引用
收藏
页码:140 / 164
页数:25
相关论文
共 23 条
[1]  
[Anonymous], 1995, QUALITATIVE THEORY D
[2]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[3]  
[Anonymous], 1970, Annali di Matematica Pura ed Applicata
[4]  
[Anonymous], 1964, NONLINEAR DIFFERENTI
[5]  
[Anonymous], STABILITY LIAPUNOVS
[6]  
CESARIU L, 1963, ASYMPTOTIC BEHAV STA
[7]  
FARKAS M, 1994, PERIODIC MOTIONS
[8]   GENERALIZED LIENARD EQUATION WITH NEGATIVE DAMPING [J].
GRAEF, JR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :34-+
[9]   A NECESSARY AND SUFFICIENT CONDITION FOR OSCILLATION OF THE GENERALIZED LIENARD EQUATION [J].
HARA, T ;
YONEYAMA, T ;
SUGIE, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 154 :223-230
[10]  
HARA T, 1985, FUNKC EKVACIOJ-SER I, V28, P171