Polynomial duality-symmetric lagrangians for free p-forms

被引:17
作者
Bansal, Sukruti [1 ]
Evnin, Oleg [1 ,2 ,3 ]
Mkrtchyan, Karapet [4 ,5 ,6 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Phys, Phayathai Rd, Bangkok 10330, Thailand
[2] Vrije Univ Brussel, Theoret Nat Kunde, Pl Laan 2, B-1050 Brussels, Belgium
[3] Int Solvay Inst, Pl Laan 2, B-1050 Brussels, Belgium
[4] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[5] Ist Nazl Fis Nucl, Piazza Cavalieri 7, I-56126 Pisa, Italy
[6] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 03期
基金
欧盟地平线“2020”;
关键词
QUANTUM-FIELD THEORY; SELF-DUALITY; MANIFEST LORENTZ; INVARIANCE;
D O I
10.1140/epjc/s10052-021-09049-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore the properties of polynomial Lagrangians for chiral p-forms previously proposed by the last named author, and in particular, provide a self-contained treatment of the symmetries and equations of motion that shows a great economy and simplicity of this formalism. We further use analogous techniques to construct polynomial democratic Lagrangians for general p-forms where electric and magnetic potentials appear on equal footing as explicit dynamical variables. Due to our reliance on the differential form notation, the construction is compact and universally valid for forms of all ranks, in any number of dimensions.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Asymptotic symmetries in p-form theories [J].
Afshar, Hamid ;
Esmaeili, Erfan ;
Sheikh-Jabbari, M. M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05)
[2]   Geometrical aspects of an Abelian (2,0) action [J].
Andriolo, E. ;
Lambert, N. ;
Papageorgakis, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
[3]   Duality-symmetric eleven-dimensional supergravity and its coupling to M-branes [J].
Bandos, I ;
Berkovits, N ;
Sorokin, D .
NUCLEAR PHYSICS B, 1998, 522 (1-2) :214-233
[4]   Covariant action for the super-five-brane of M theory [J].
Bandos, I ;
Lechner, K ;
Nurmagambetov, A ;
Pasti, P ;
Sorokin, D ;
Tonin, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4332-4334
[5]   Nonlinear duality-invariant conformal extension of Maxwell's equations [J].
Bandos, Igor ;
Lechner, Kurt ;
Sorokin, Dmitri ;
Townsend, Paul K. .
PHYSICAL REVIEW D, 2020, 102 (12)
[6]  
BIALYNICKIBIRULA I, 1992, ACTA PHYS POL B, V23, P553
[7]  
BialynickiBirula I, 1984, NONLINEAR ELECTRODYN, P31
[8]   THE QUANTUM-FIELD THEORY OF ELECTRIC AND MAGNETIC CHARGE [J].
BLAGOJEVIC, M ;
SENJANOVIC, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 157 (4-5) :233-346
[9]   Duality Invariance Implies Poincare Invariance [J].
Bunster, Claudio ;
Henneaux, Marc .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)
[10]   Self-interacting chiral p-forms in higher dimensions [J].
Buratti, Ginevra ;
Lechner, Kurt ;
Melotti, Luca .
PHYSICS LETTERS B, 2019, 798