Interconversion between CO2 and HCOOH under Basic Conditions Catalyzed by PdAu Nanoparticles Supported by Amine-Functionalized Reduced Graphene Oxide as a Dual Catalyst

被引:75
作者
Zhong, Heng [1 ]
Iguchi, Masayuki [1 ]
Chatterjee, Maya [1 ]
Ishizaka, Takayuki [1 ]
Kitta, Mitsunori [2 ]
Xu, Qiang [3 ]
Kawanami, Hajime [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Chem Proc Technol, Miyagino Ku, 4-2-1 Nigatake, Sendai, Miyagi 9838551, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Electrochem Energy, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan
[3] Kyoto Univ, AIST, Chem Energy Mat Open Innovat Lab ChEM OIL, Natl Inst Adv Ind Sci & Technol,Sakyo Ku, Kyoto 6068501, Japan
基金
日本科学技术振兴机构;
关键词
liquid organic hydrogen carrier; hydrogen storage; formic acid dehydrogenation; CO2; reduction; heterogeneous catalyst; renewable energy; ROOM-TEMPERATURE DEHYDROGENATION; FORMIC-ACID; HYDROGEN GENERATION; HETEROGENEOUS CATALYSTS; PALLADIUM NANOPARTICLES; STORAGE; FORMATE; PERFORMANCE; CARBON; NANOCATALYST;
D O I
10.1021/acscatal.8b00294
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the utilization of formic acid (FA) or formate as promising hydrogen carriers through the interconversion between CO2 and HCOOH or HCO3- and HCOO-, respectively, has attracted increasing research interest. In this work, a PdAu bimetallic catalyst supported on phenylenediamine-alkalized reduced graphene oxide (Pd0.5Au0.5/PDA-rGO) was developed for catalyzing bicarbonate hydrogenation under basic conditions as well as FA/formate dehydrogenation under acidic and basic conditions. Without any additives, a very high yield (94%) of potassium formate (PF) can be achieved from the hydrogenation of potassium bicarbonate at 50 degrees C for 16 h. On the other hand, initial TOFs of 1.63 X 10(3) and 6.98 X 10(3) h-(1) were accomplished in the dehydrogenations of 6 mol/L PF and 8 mol/L FA, respectively, at 80 degrees C. This work successfully demonstrates highly efficient CO2 hydrogenation and is the first report of a Pd-based heterogeneous catalyst for the additive-free dehydrogenation of concentrated (>6 mol/L) PF or FA solution. It significantly enhanced the hydrogen capacity and is of great interest for practical applications. The good performance of this catalyst is probably attributed to (i) the nanosized (1.8 +/- 0.5 nm) metal particles, (ii) the presence of an amine group on the support, which can act as a proton scavenger, and (iii) the additional Au component prohibiting CO formation and enhancing the durability of the catalyst even in high concentration FA/formate solutions.
引用
收藏
页码:5355 / 5362
页数:15
相关论文
共 48 条
[1]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[2]   Promoted hydrogen generation from formic acid with amines using Au/ZrO2 catalyst [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
Huang, Fu-Qiang ;
Cao, Yong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) :21193-21202
[3]   Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
He, He-Yong ;
Huang, Fu-Qiang ;
Cao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (39) :11849-11853
[4]   An Aqueous Rechargeable Formate-Based Hydrogen Battery Driven by Heterogeneous Pd Catalysis [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
Du, Xian-Long ;
Wang, Jian-Qiang ;
He, He-Yong ;
Cao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (49) :13583-13587
[5]   Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions [J].
Bi, Qng-Yuan ;
Du, Xian-Long ;
Liu, Yong-Mei ;
Cao, Yong ;
He, He-Yong ;
Fan, Kang-Nian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (21) :8926-8933
[6]   An overview of organic liquid phase hydrogen carriers [J].
Bourane, Abdennour ;
Elanany, Mohamed ;
Pham, Thang V. ;
Katikaneni, Sai P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) :23075-23091
[7]   MnOx-Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature [J].
Bulut, Ahmet ;
Yurderi, Mehmet ;
Karatas, Yasar ;
Say, Zafer ;
Kivrak, Hilal ;
Kaya, Murat ;
Gulcan, Mehmet ;
Ozensoy, Emrah ;
Zahmakiran, Mehmet .
ACS CATALYSIS, 2015, 5 (10) :6099-6110
[8]   Pd-MnOx nanoparticles dispersed on amine-grafted silica: Highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions [J].
Bulut, Ahmet ;
Yurderi, Mehmet ;
Karatas, Yasar ;
Zahmakiran, Mehmet ;
Kivrak, Hilal ;
Gulcan, Mehmet ;
Kaya, Murat .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 :324-333
[9]   Hydrogen storage: beyond conventional methods [J].
Dalebrook, Andrew F. ;
Gan, Weijia ;
Grasemann, Martin ;
Moret, Severine ;
Laurenczy, Gabor .
CHEMICAL COMMUNICATIONS, 2013, 49 (78) :8735-8751
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240