Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis

被引:61
作者
Jules, Joel [1 ]
Ashley, Jason W. [1 ]
Feng, Xu [1 ]
机构
[1] Univ Alabama Birmingham, Dept Pathol, Birmingham, AL 35294 USA
关键词
antiresorptive drug; OPG; osteoclast; osteoporosis; RANK; RANKL; therapeutic target; TUMOR-NECROSIS-FACTOR; NF-KAPPA-B; TNF FAMILY-MEMBER; OSTEOCLAST DIFFERENTIATION FACTOR; FACTOR RECEPTOR FAMILY; POSTMENOPAUSAL OSTEOPOROSIS; CYTOPLASMIC MOTIF; BONE-RESORPTION; ANTIRESORPTIVE TREATMENT; OSTEOPROTEGERIN-LIGAND;
D O I
10.1517/14728222.2010.511179
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Importance of the field: Osteoporosis has become a worldwide health and social issue due to an aging population. Four major antiresorptive drugs (agents capable of inhibiting osteoclast formation and/or function) are currently available on the market: estrogen, selective estrogen receptor modulators (SERMs), bisphosphonates and calcitonin. These drugs either lack satisfactory efficacy or have potential to cause serious side effects. Thus, development of more efficacious and safer drugs is warranted. Areas covered in this review: The discovery of the receptor activator of NF-kappa B ligand (RANKL) and its two receptors, RANK and osteoprotegerin (OPG), has not only established a crucial role for the RANKL/RANK/OPG axis in osteoclast biology but also created a great opportunity to develop new drugs targeting this system for osteoporosis therapy. This review focuses on discussion of therapeutic targeting of RANK signaling. What the reader will gain: An update on the functions of RANKL and an overview of the known RANK signaling pathways in osteoclasts. A discussion of rationales for exploring RANK signaling pathways as potent and specific therapeutic targets to promote future development of better drugs for osteoporosis. Take home message: Several RANK signaling components have the potential to serve as potent and specific therapeutic targets for osteoporosis.
引用
收藏
页码:923 / 934
页数:12
相关论文
共 103 条
[1]   The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance [J].
Akiyama, Taishin ;
Shimo, Yusuke ;
Yanai, Hiromi ;
Qin, Junwen ;
Ohshima, Daisuke ;
Maruyama, Yuya ;
Asaumi, Yukiko ;
Kitazawa, Juli ;
Takayanagi, Hiroshi ;
Penninger, Josef M. ;
Matsumoto, Mitsuru ;
Nitta, Takeshi ;
Takahama, Yousuke ;
Inoue, Jun-ichiro .
IMMUNITY, 2008, 29 (03) :423-437
[2]   Efficacy and Safety of Denosumab in Postmenopausal Women with Osteopenia or Osteoporosis: A Systematic Review and a Meta-analysis [J].
Anastasilakis, A. D. ;
Toulis, K. A. ;
Goulis, D. G. ;
Polyzos, S. A. ;
Delaroudis, S. ;
Giomisi, A. ;
Terpos, E. .
HORMONE AND METABOLIC RESEARCH, 2009, 41 (10) :721-729
[3]   A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function [J].
Anderson, DM ;
Maraskovsky, E ;
Billingsley, WL ;
Dougall, WC ;
Tometsko, ME ;
Roux, ER ;
Teepe, MC ;
DuBose, RF ;
Cosman, D ;
Galibert, L .
NATURE, 1997, 390 (6656) :175-179
[4]   A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function [J].
Armstrong, AP ;
Tometsko, ME ;
Glaccum, M ;
Sutherland, CL ;
Cosman, D ;
Dougall, WC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (46) :44347-44356
[5]   Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts [J].
Azuma, Y ;
Kaji, K ;
Katogi, R ;
Takeshita, S ;
Kudo, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :4858-4864
[6]   TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation [J].
Bachmann, MF ;
Wong, BR ;
Josien, R ;
Steinman, RM ;
Oxenius, A ;
Choi, Y .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 189 (07) :1025-1031
[7]   C-myc is required for osteoclast differentiation [J].
Battaglino, R ;
Kim, D ;
Fu, J ;
Vaage, B ;
Fu, XY ;
Stashenko, P .
JOURNAL OF BONE AND MINERAL RESEARCH, 2002, 17 (05) :763-773
[8]   Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures [J].
Black, DM ;
Cummings, SR ;
Karpf, DB ;
Cauley, JA ;
Thompson, DE ;
Nevitt, MC ;
Bauer, DC ;
Genant, HK ;
Haskell, WL ;
Marcus, R ;
Ott, SM ;
Torner, JC ;
Quandt, SA ;
Reiss, TF ;
Ensrud, KE .
LANCET, 1996, 348 (9041) :1535-1541
[9]   The molecular architecture of the TNF superfamily [J].
Bodmer, JL ;
Schneider, P ;
Tschopp, J .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (01) :19-26
[10]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342