Improving the stability of multiple-relaxation lattice Boltzmann methods with central moments

被引:32
作者
Chavez-Modena, M. [1 ,2 ]
Ferrer, E. [1 ,2 ]
Rubio, G. [1 ,2 ]
机构
[1] Univ Politecn Madrid, ETSIAE, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
[2] Univ Politecn Madrid, Ctr Computat Simulat, Campus Montegancedo, E-28660 Madrid, Spain
关键词
Lattice Boltzmann; Multiple-relaxation time; von Neumann analysis; Dispersion and dissipation errors; Rule of k-1% dispersion-error; DISPERSION; DISSIPATION; SCHEMES; SIMULATIONS; MODELS;
D O I
10.1016/j.compfluid.2018.03.084
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we seek lattice Boltzmann methods (LBM) with improved stability that retain accuracy. Using von Neumann stability analysis to extract dispersion and diffusion errors, we compare the D2Q9 lattice scheme with three collision operators: the single relaxation time (BGK), the multiple-relaxation time with raw moments (MRT-RM) and with central moments (MRT-CM). First, we observe that the MRT-CM shows favorable properties when compared to the other two schemes. This method provides low errors, enhanced stability and enables the modification of free parameters. Second, we optimize these free parameters to increase dissipation only for high under-resolved wavenumbers, leaving low wavenumbers (well resolved scales) unchanged. In particular, we show that the optimized MRT-CM can cope with lower viscosities, higher velocities and coarser meshes that their predecessors. Finally, the optimized MRT-CM is tested for a shear layers flow to illustrate the enhanced stability and accuracy of the proposed technique. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:397 / 409
页数:13
相关论文
共 29 条
  • [1] [Anonymous], 2015, ARXIV PREPRINT ARXIV
  • [2] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [3] Chapman S, 1970, The Mathematical Theory of Non-uniform Gases
  • [4] Charney J.G., 1950, Tellus, V2, P237254
  • [5] Recursive regularization step for high-order lattice Boltzmann methods
    Coreixas, Christophe
    Wissocq, Gauthier
    Puigt, Guillaume
    Boussuge, Jean-Francois
    Sagaut, Pierre
    [J]. PHYSICAL REVIEW E, 2017, 96 (03)
  • [6] Multiple-relaxation-time lattice Boltzmann models in three dimensions
    d'Humières, D
    Ginzburg, I
    Krafczyk, M
    Lallemand, P
    Luo, LS
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792): : 437 - 451
  • [7] Bulk and shear viscosities in lattice Boltzmann equations
    Dellar, PJ
    [J]. PHYSICAL REVIEW E, 2001, 64 (03): : 11 - 312031
  • [8] DHUMIERES D, 1994, PROGR ASTRONAUT AERO, V159, P450
  • [9] On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations
    Dubois, Francois
    Fevrier, Tony
    Graille, Benjamin
    [J]. COMPTES RENDUS MECANIQUE, 2015, 343 (10-11): : 599 - 610
  • [10] Lattice Boltzmann Schemes with Relative Velocities
    Dubois, Francois
    Fevrier, Tony
    Graille, Benjamin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (04) : 1088 - 1112