Reduced Graphene Oxide-Wrapped Nickel-Rich Cathode Materials for Lithium Ion Batteries

被引:116
作者
Shim, Jae-Hyun [1 ]
Kim, Young-Min [1 ,2 ]
Park, Miji [3 ]
Kim, Jongsik [3 ]
Lee, Sanghun [4 ]
机构
[1] Sungkyunkwan Univ SKKU, Dept Energy Sci, Suwon 16419, Gyunggido, South Korea
[2] Inst Basic Sci, Ctr Integrated Nanostruct Phys, Suwon 16419, Gyunggido, South Korea
[3] Dong A Univ, Dept Chem, Busan 49315, South Korea
[4] Gachon Univ, Dept Nanochem, Seongnam 13120, Gyunggido, South Korea
基金
新加坡国家研究基金会;
关键词
lithium ion battery; rGO-encapsulated cathode; structural degradation; electrical conductivity; Ni-rich cathode; HIGH-PERFORMANCE ANODE; X-RAY-DIFFRACTION; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; CYCLING PERFORMANCE; ENERGY; LICOO2; COMPOSITE; NANOPARTICLES; IMPROVEMENT;
D O I
10.1021/acsami.7b02654
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The encapsulation of Ni-rich cathode materials (Li-Ni0.6Co0.2Mn0.2O2) for lithium ion batteries in reduced graphene oxide (rGO) shets is introduced to improve electrochemical performances. Using (3-aminopropyl)ttriethoxysilane, the active materials are completely wrapped with several rGO layers of similar to 2 nm thickness. By virtue of the great electrical conductivity of graphene, the rGO-coated cathode materials exhibit much enhanced electrochemical performances of cycling property and rate capability. In addition, it is shown that the structural degradation of the active materials, which is from the rhombohedral layered structure (R (3) over barm) to the spinel (Fd (3) over barm) or rock-salt phase (Fm (3) over barm), is significantly reduced as well as delayed due to the protection of the active materials in the rGO layers from direct contact with electrolytes and the consequent suppression of side reactions.
引用
收藏
页码:18720 / 18729
页数:10
相关论文
共 67 条
[1]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[2]   Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Chang, Wonyoung ;
Yu, Xiqian ;
Hu, Enyuan ;
Hwang, Sooyeon ;
Stach, Eric A. ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing .
CHEMISTRY OF MATERIALS, 2013, 25 (03) :337-351
[3]   Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications [J].
Chang, Haixin ;
Wu, Hongkai .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3483-3507
[4]   Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries [J].
Chang, Wonyoung ;
Choi, Jung-Woo ;
Im, Jong-Choo ;
Lee, Joong Kee .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :320-326
[5]   Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells [J].
Cho, J ;
Kim, H ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) :A1707-A1711
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[9]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[10]   Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Zheng, Jianming ;
Wu, Huiming ;
Xiao, Jie ;
Genc, Arda ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
ACS NANO, 2013, 7 (01) :760-767