A characterization of Clifford hypersurfaces among embedded constant mean curvature hypersurfaces in a unit sphere

被引:0
作者
Min, Sung-Hong [1 ]
Seo, Keomkyo [2 ]
机构
[1] Chungnam Natl Univ, Dept Math, Daehak Ro 99, Daejeon 305764, South Korea
[2] Sookmyung Womens Univ, Dept Math, Hyochangwongil 52, Seoul 140742, South Korea
关键词
Clifford hypersurface; Simons-type identity; constant mean curvature; embedded hypersurface; MINIMAL HYPERSURFACES; TORI; RIGIDITY; INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma be an n(>= 3)-dimensional compact embedded hypersurface in a unit sphere with constant mean curvature H >= 0 and with two distinct principal curvatures lambda and mu of multiplicity n - 1 and 1, respectively. It is known that if lambda > mu, there exist many compact embedded constant mean curvature hypersurfaces [ 26]. In this paper, we prove that if lambda > mu, then Sigma is congruent to a Clifford hypersurface. The proof is based on the arguments used by Brendle [10].
引用
收藏
页码:503 / 534
页数:32
相关论文
共 34 条
[21]   INTEGRAL INEQUALITIES RELATED WITH A CERTAIN NONLINEAR DIFFERENTIAL EQUATION [J].
OTSUKI, T .
PROCEEDINGS OF THE JAPAN ACADEMY, 1972, 48 (01) :9-&
[22]   MINIMAL HYPERSURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE [J].
OTSUKI, T .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (01) :145-&
[23]   Rigidity of minimal hypersurfaces of spheres with two principal curvatures [J].
Perdomo, O .
ARCHIV DER MATHEMATIK, 2004, 82 (02) :180-184
[24]  
Perdomo OM, 2010, ASIAN J MATH, V14, P73
[25]   CURVATURE ESTIMATES FOR MINIMAL HYPERSURFACES [J].
SCHOEN, R ;
SIMON, L ;
YAU, ST .
ACTA MATHEMATICA, 1975, 134 (3-4) :275-288
[26]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&
[27]   Rigidity of Clifford minimal hypersurfaces [J].
Wang, QL .
MONATSHEFTE FUR MATHEMATIK, 2003, 140 (02) :163-167
[28]   Rigidity theorem for hypersurfaces in a unit sphere [J].
Wei, Guoxin .
MONATSHEFTE FUR MATHEMATIK, 2006, 149 (04) :343-350
[29]   Complete hypersurfaces with constant mean curvature in a unit sphere [J].
Wei, Guoxin .
MONATSHEFTE FUR MATHEMATIK, 2006, 149 (03) :251-258
[30]   EMBEDDED HYPERSURFACES WITH CONSTANT mTH MEAN CURVATURE IN A UNIT SPHERE [J].
Wei, Guoxin ;
Cheng, Qing-Ming ;
Li, Haizhong .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) :997-1013