A characterization of Clifford hypersurfaces among embedded constant mean curvature hypersurfaces in a unit sphere

被引:0
作者
Min, Sung-Hong [1 ]
Seo, Keomkyo [2 ]
机构
[1] Chungnam Natl Univ, Dept Math, Daehak Ro 99, Daejeon 305764, South Korea
[2] Sookmyung Womens Univ, Dept Math, Hyochangwongil 52, Seoul 140742, South Korea
关键词
Clifford hypersurface; Simons-type identity; constant mean curvature; embedded hypersurface; MINIMAL HYPERSURFACES; TORI; RIGIDITY; INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma be an n(>= 3)-dimensional compact embedded hypersurface in a unit sphere with constant mean curvature H >= 0 and with two distinct principal curvatures lambda and mu of multiplicity n - 1 and 1, respectively. It is known that if lambda > mu, there exist many compact embedded constant mean curvature hypersurfaces [ 26]. In this paper, we prove that if lambda > mu, then Sigma is congruent to a Clifford hypersurface. The proof is based on the arguments used by Brendle [10].
引用
收藏
页码:503 / 534
页数:32
相关论文
共 34 条
[1]   Hypersurfaces with constant mean curvature and two principal curvatures in Sn+1 [J].
Alías, LJ ;
De Almeida, SC ;
Brasil, A .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2004, 76 (03) :489-497
[2]  
Andrews B., 2015, Introduction to modern mathematics, V33 of, P95
[3]  
Andrews B, 2015, J DIFFER GEOM, V99, P169
[4]   Non-collapsing in fully non-linear curvature flows [J].
Andrews, Ben ;
Langford, Mat ;
McCoy, James .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :23-32
[5]   Noncollapsing in mean-convex mean curvature flow [J].
Andrews, Ben .
GEOMETRY & TOPOLOGY, 2012, 16 (03) :1413-1418
[6]  
Berard, 1991, PITMAN MONOGRAPHS SU, V52, P47
[8]  
Brendle S., 2010, Graduate Studies in Mathematics, V111
[9]   Embedded Weingarten tori in S3 [J].
Brendle, Simon .
ADVANCES IN MATHEMATICS, 2014, 257 :462-475
[10]   ALEXANDROV IMMERSED MINIMAL TORI IN S3 [J].
Brendle, Simon .
MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) :459-464