Ewald summation method with electrostatic layer correction for interactions of point dipoles in slab geometry

被引:35
作者
Bródka, A [1 ]
机构
[1] Silesian Univ, Inst Phys, PL-40007 Katowice, Poland
关键词
D O I
10.1016/j.cplett.2004.10.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ewald method with electrostatic layer correction term for summing dipole-dipole interactions in slab geometry is presented. Theoretical cut-off errors in the electrostatic layer correction term as well as real- and reciprocal-space terms of the total energy are estimated, and their applicability is confirmed in numerical calculations. It is demonstrated that the summation method requires relative small gap of an empty space in the simulation box, and the theoretical errors can be used in determining optimal parameters of the method. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 15 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions
[2]  
Allen M. P., 1990, COMPUTER SIMULATION
[3]  
Arnold A, 2002, J CHEM PHYS, V117, P2496, DOI 10.1063/1.1491955
[4]   Comment on "Electrostatics in periodic slab geometries.: I" [J. Chem. Phys. 117, 2496 (2002)] [J].
Bródka, A .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (14) :7032-7034
[5]   Electrostatic interactions in computer simulations of a three-dimensional system periodic in two directions:: Ewald-type summation [J].
Bródka, A ;
Grzybowski, A .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (18) :8208-8211
[6]   SIMULATION OF ELECTROSTATIC SYSTEMS IN PERIODIC BOUNDARY-CONDITIONS .1. LATTICE SUMS AND DIELECTRIC-CONSTANTS [J].
DELEEUW, SW ;
PERRAM, JW ;
SMITH, ER .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 373 (1752) :27-56
[7]   Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional system with periodicity in two directions [J].
Grzybowski, A ;
Gwózdz, E ;
Bródka, A .
PHYSICAL REVIEW B, 2000, 61 (10) :6706-6712
[8]   Lekner type method for summing the dipole-dipole interactions in computer simulations of one- and two-dimensionally periodic systems [J].
Grzybowski, A ;
Bródka, A .
MOLECULAR PHYSICS, 2003, 101 (08) :1079-1088
[9]   Computationally efficient method for summing interactions of point dipoles in three dimensions with two-dimensional periodicity [J].
Grzybowski, A ;
Bródka, A .
CHEMICAL PHYSICS LETTERS, 2002, 361 (3-4) :329-333
[10]  
HEYES DM, 1981, SURF SCI, V110, pL619, DOI 10.1016/0039-6028(81)90632-4