A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING

被引:428
作者
Bioucas-Dias, Jose M. [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomun, P-1096 Lisbon, Portugal
来源
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING | 2009年
关键词
Hyperspectral unmixing; Minimum volume simplex; Variable Splitting augmented Lagrangian; nonsmooth optimization; ENDMEMBER EXTRACTION; COMPONENT ANALYSIS; ALGORITHM;
D O I
10.1109/WHISPERS.2009.5289072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new linear hyperspectral unmixing method of the minimum volume class, termed simplex identification via split augmented Lagrangian (SISAL). Following Craig's seminal ideas, hyperspectral linear unmixing amounts to finding the minimum volume simplex containing the hyperspectral vectors. This is a nonconvex optimization problem with convex constraints. In the proposed approach, the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The obtained problem is solved by a sequence of augmented Lagrangian optimizations. The resulting algorithm is very fast and able so solve problems far beyond the reach of the current state-of-the art algorithms. The effectiveness of SISAL is illustrated with simulated data.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 23 条
  • [1] [Anonymous], 0829 U CAL
  • [2] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445
  • [3] Boardman J., 1993, JPL PUBLICATION, V1, P11
  • [4] A new growing method for simplex-based endmember extraction algorithm
    Chang, Chein-I
    Wu, Chao-Cheng
    Liu, Wei-min
    Ouyang, Yen-Chieh
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10): : 2804 - 2819
  • [5] Chi C. Y., 2009, IEEE INT C AC SPEECH
  • [6] Signal recovery by proximal forward-backward splitting
    Combettes, PL
    Wajs, VR
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (04) : 1168 - 1200
  • [7] MINIMUM-VOLUME TRANSFORMS FOR REMOTELY-SENSED DATA
    CRAIG, MD
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03): : 542 - 552
  • [8] Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Chang, Chein-I
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 2684 - 2695
  • [9] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [10] FIGUEIREDO M, 2009, FAST IMAGE RESTOTARI