Influence of the spin pumping induced inverse spin Hall effect on spin-torque ferromagnetic resonance measurements

被引:5
|
作者
Liu, Qi [1 ,2 ,3 ]
Zhang, Y. [4 ,5 ]
Sun, L. [1 ,2 ,3 ]
Miao, Bingfeng [1 ,2 ,3 ]
Wang, X. R. [4 ,5 ]
Ding, H. F. [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[3] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Hongkong Univ Sci & Technol, Phys Dept, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] HKUST Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ORBIT TORQUES; DRIVEN; DEPENDENCE; CONVERSION; MAGNITUDE;
D O I
10.1063/5.0038567
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spin-torque ferromagnetic resonance (ST-FMR) has been widely used to determine the spin-orbit torque (SOT) efficiency in ferromagnet/heavy-metal bilayer systems. The flow of a radio frequency current through heavy-metal generates an oscillating SOT and Oersted field, resulting in the resonance of the adjacent ferromagnetic layer and subsequent dc voltage due to the rectification effect. The dynamics of the ferromagnet, however, also pumps a spin current back into the heavy-metal. Wherein, an additional contribution to the dc voltage arises from the inverse spin Hall effect (ISHE). The spin pumping-induced ISHE (SP-ISHE) and ST-FMR voltages typically have identical symmetry. In this work, we develop a method to quantitatively obtain the SP-ISHE voltage from the ST-FMR signal in the Py(Ni80Fe20)/Pt bilayer. We find it has the opposite sign to the symmetric component of ST-FMR voltage. After this correction, both the damping-like and field-like-torque efficiency in the Py/Pt bilayer are further estimated through the Py-thickness-dependent measurements.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Spin-Torque Manipulation for Hydrogen Sensing
    An, Hongyu
    Haku, Satoshi
    Kageyama, Yuito
    Musha, Akira
    Tazaki, Yuya
    Ando, Kazuya
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
  • [22] Spin-torque building blocks
    Locatelli, N.
    Cros, V.
    Grollier, J.
    NATURE MATERIALS, 2014, 13 (01) : 11 - 20
  • [23] Spin-Torque Microwave Detectors
    Prokopenko, Oleksandr V.
    Krivorotov, Ilya N.
    Meitzler, Thomas J.
    Bankowski, Elena
    Tiberkevich, Vasil S.
    Slavin, Andrei N.
    MAGNONICS: FROM FUNDAMENTALS TO APPLICATIONS, 2013, 125 : 143 - 161
  • [24] Control of spin-wave emission from spin-torque nano-oscillators by microwave pumping
    Demidov, Vladislav E.
    Urazhdin, Sergei
    Tiberkevich, Vasyl
    Slavin, Andrei
    Demokritov, Sergej O.
    PHYSICAL REVIEW B, 2011, 83 (06):
  • [25] Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect
    Tomasello, R.
    Carpentieri, M.
    Finocchio, G.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [26] Manipulation of Spin-Torque Generation Using Ultrathin Au
    An, Hongyu
    Haku, Satoshi
    Kanno, Yusuke
    Nakayama, Hiroyasu
    Maki, Hideyuki
    Shi, Ji
    Ando, Kazuya
    PHYSICAL REVIEW APPLIED, 2018, 9 (06):
  • [27] Inhomogeneous magnetic properties characterized by simultaneous electrical and optical detection of spin-torque ferromagnetic resonance
    Shiota, Yoichi
    Hisatomi, Ryusuke
    Moriyama, Takahiro
    Samardak, Alexander S.
    Ono, Teruo
    APPLIED PHYSICS LETTERS, 2021, 119 (19)
  • [28] Noise-induced synchronization of spin-torque oscillators
    Imai, Yusuke
    Tsunegi, Sumito
    Nakajima, Kohei
    Taniguchi, Tomohiro
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [29] Determination of the spin Hall effect and the spin diffusion length of Pt from self-consistent fitting of damping enhancement and inverse spin-orbit torque measurements
    Berger, Andrew J.
    Edwards, Eric R. J.
    Nembach, Hans T.
    Karis, Olof
    Weiler, Mathias
    Silva, T. J.
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [30] Antiferromagnetic Inverse Spin Hall Effect
    Huang, Lin
    Zhou, Yongjian
    Qiu, Hongsong
    Bai, Hua
    Chen, Chong
    Yu, Weichao
    Liao, Liyang
    Guo, Tingwen
    Pan, Feng
    Jin, Biaobing
    Song, Cheng
    ADVANCED MATERIALS, 2022, 34 (42)