Coloring Plane Graphs with Independent Crossings

被引:41
作者
Kral, Daniel [1 ]
Stacho, Ladislav [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci ITI, Prague 11800, Czech Republic
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
planar graphs; cyclic coloring; crossing number; chromatic number; CYCLIC COLORINGS; FACIAL COLORINGS; THEOREM;
D O I
10.1002/jgt.20448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every plane graph with maximum face size four in which all faces of size four are vertex-disjoint is cyclically 5-colorable. This answers a question of Albertson whether graphs drawn in the plane with all crossings independent are 5-colorable. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 64: 184-205. 2010
引用
收藏
页码:184 / 205
页数:22
相关论文
共 25 条
[1]  
Albertson M., 2008, SIAM C DISCR MATH BU
[2]  
Albertson MO, 2008, ARS MATH CONTEMP, V1, P1
[3]  
AMINI O, UNIFIED APPROA UNPUB
[4]  
Appel K., 1976, B AM MATH SOC, V82, P449
[5]  
AZARIJA J, ARXIV08112704
[6]   On cyclic colorings and their generalizations [J].
Borodin, OV ;
Sanders, DP ;
Zhao, Y .
DISCRETE MATHEMATICS, 1999, 203 (1-3) :23-40
[7]   CYCLIC COLORING OF PLANE GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1992, 100 (1-3) :281-289
[8]   A NEW PROOF OF THE 6 COLOR THEOREM [J].
BORODIN, OV .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :507-521
[9]  
BORODIN OV, 1984, METODY DISKRET ANAL, V41, P12
[10]   Cyclic chromatic number of 3-connected plane graphs [J].
Enomoto, H ;
Hornák, M ;
Jendrol, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (01) :121-137