Coloring Plane Graphs with Independent Crossings

被引:38
作者
Kral, Daniel [1 ]
Stacho, Ladislav [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci ITI, Prague 11800, Czech Republic
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
planar graphs; cyclic coloring; crossing number; chromatic number; CYCLIC COLORINGS; FACIAL COLORINGS; THEOREM;
D O I
10.1002/jgt.20448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every plane graph with maximum face size four in which all faces of size four are vertex-disjoint is cyclically 5-colorable. This answers a question of Albertson whether graphs drawn in the plane with all crossings independent are 5-colorable. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 64: 184-205. 2010
引用
收藏
页码:184 / 205
页数:22
相关论文
共 25 条
  • [1] Albertson M., 2008, SIAM C DISCR MATH BU
  • [2] Albertson MO, 2008, ARS MATH CONTEMP, V1, P1
  • [3] AMINI O, UNIFIED APPROA UNPUB
  • [4] Appel K., 1976, B AM MATH SOC, V82, P449
  • [5] AZARIJA J, ARXIV08112704
  • [6] On cyclic colorings and their generalizations
    Borodin, OV
    Sanders, DP
    Zhao, Y
    [J]. DISCRETE MATHEMATICS, 1999, 203 (1-3) : 23 - 40
  • [7] CYCLIC COLORING OF PLANE GRAPHS
    BORODIN, OV
    [J]. DISCRETE MATHEMATICS, 1992, 100 (1-3) : 281 - 289
  • [8] A NEW PROOF OF THE 6 COLOR THEOREM
    BORODIN, OV
    [J]. JOURNAL OF GRAPH THEORY, 1995, 19 (04) : 507 - 521
  • [9] BORODIN OV, 1984, METODY DISKRET ANAL, V41, P12
  • [10] Cyclic chromatic number of 3-connected plane graphs
    Enomoto, H
    Hornák, M
    Jendrol, S
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (01) : 121 - 137