Signatures of Combinatorial Maps

被引:0
|
作者
Gosselin, Stephane [1 ]
Damiand, Guillaume [1 ]
Solnon, Christine [1 ]
机构
[1] Univ Lyon 1, LIRIS, CNRS, UMR5205, F-69622 Villeurbanne, France
来源
COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS | 2009年 / 5852卷
关键词
Combinatorial map; canonical representation; signature; linear isomorphism; EXTRACTION ALGORITHM; IMAGE REPRESENTATION; TOPOLOGICAL MODEL; ISOMORPHISM; DEFINITION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we address the problem of computing a canonical representation of an n-dimensional combinatorial map. To do so, we define two combinatorial map signatures: the first one has a quadratic space complexity and may be used to decide of isomorphism with a new map in linear time whereas the second one has a linear space complexity and may be used to decide of isomorphism in quadratic time. Experimental results show that these signatures can be used to recognize images very efficiently.
引用
收藏
页码:370 / 382
页数:13
相关论文
共 50 条
  • [1] Efficient search of combinatorial maps using signatures
    Gosselin, Stephane
    Damiand, Guillaume
    Solnon, Christine
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (15) : 1392 - 1405
  • [2] Polynomial algorithms for subisomorphism of nD open combinatorial maps
    Damiand, Guillaume
    Solnon, Christine
    de la Higuera, Colin
    Janodet, Jean-Christophe
    Samuel, Emilie
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (07) : 996 - 1010
  • [3] A distance measure between labeled combinatorial maps
    Wang, Tao
    Dai, Guojun
    Ni, Bingbing
    Xu, De
    Siewe, Francois
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (12) : 1168 - 1177
  • [4] An error-tolerant approximate matching algorithm for labeled combinatorial maps
    Wang, Tao
    Yang, Hua
    Lang, Congyan
    Feng, Songhe
    NEUROCOMPUTING, 2015, 156 : 211 - 220
  • [5] Joint Tree of Combinatorial Maps
    Wang, Tao
    Lang, Congyan
    Feng, Songhe
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2014, 8643 : 22 - 28
  • [6] Homotopic transformations of combinatorial maps
    Marchadier, J
    Kropatsch, WG
    Hanbury, A
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2003, 2886 : 134 - 143
  • [7] A polynomial algorithm for submap isomorphism of general maps
    Wang, Tao
    Dai, Guojun
    Xu, De
    PATTERN RECOGNITION LETTERS, 2011, 32 (08) : 1100 - 1107
  • [8] A generic implementation of dD combinatorial maps in CGAL
    Damiand, Guillaume
    Teillaud, Monique
    23RD INTERNATIONAL MESHING ROUNDTABLE (IMR23), 2014, 82 : 46 - 58
  • [9] Measuring the Distance of Generalized Maps
    Combier, Camille
    Damiand, Guillaume
    Solnon, Christine
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, 2011, 6658 : 82 - 91
  • [10] Tiled Top-Down Combinatorial Pyramids for Large Images Representation
    Goffe, Romain
    Brun, Luc
    Damiand, Guillaume
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2011, 21 (01) : 28 - 36