An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean

被引:119
|
作者
Chu, Shanshan [1 ,2 ]
Wang, Jiao [1 ]
Zhu, Ying [1 ]
Liu, Shulin [3 ]
Zhou, Xiaoqiong [1 ]
Zhang, Huairen [1 ]
Wang, Chun-e [4 ]
Yang, Wenming [1 ]
Tian, Zhixi [3 ]
Cheng, Hao [1 ]
Yu, Deyue [1 ]
机构
[1] Nanjing Agr Univ, Natl Ctr Soybean Improvement, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing, Jiangsu, Peoples R China
[2] Henan Agr Univ, Dept Agron, Zhengzhou, Henan, Peoples R China
[3] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Cell & Chromosome Engn, Beijing, Peoples R China
[4] Jiujiang Univ, Coll Pharm & Life Sci, Jiujiang, Jiangxi, Peoples R China
来源
PLOS GENETICS | 2017年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
GENOME-WIDE ASSOCIATION; PHENYLALANINE AMMONIA-LYASE; GLYCINE-MAX; DROUGHT TOLERANCE; AGRONOMIC TRAITS; GENE; EXPRESSION; ACCUMULATION; RESISTANCE; DEFENSE;
D O I
10.1371/journal.pgen.1006770
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L.) Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS), we identified 28 single nucleotide polymorphisms (SNPs) that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5'-untranslated region (5'-UTR) of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2) and CHS8 (chalcone synthase 8) gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] R2R3-MYB transcription factor CaMYB5 regulates anthocyanin biosynthesis in pepper fruits
    Zhou, Huidan
    Deng, Qiaoling
    Li, Mengjuan
    Cheng, Hong
    Huang, Yaoyao
    Liao, Jingjing
    Mo, Yunrong
    Zhao, Kai
    Xie, Qiaoli
    Ma, Yanna
    Wang, Yanyan
    Lv, Junheng
    Deng, Minghua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [32] An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry
    Li, Tiemei
    Xin, Wenjiao
    Li, Yutao
    Wang, Aoxue
    Yang, Guohui
    AGRONOMY-BASEL, 2023, 13 (07):
  • [33] R2R3-MYB transcription factor PhMYB2 positively regulates anthocyanin biosynthesis in Pericallis hybrida
    Cui, Yumeng
    Fan, Jiawei
    Liu, Fangye
    Li, Hao
    Pu, Ya
    Huang, He
    Dai, Silan
    SCIENTIA HORTICULTURAE, 2023, 322
  • [34] The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2 (VdSTS2)
    Yihe Yu
    Dalong Guo
    Guirong Li
    Yingjun Yang
    Guohai Zhang
    Shaohua Li
    Zhenchang Liang
    BMC Plant Biology, 19
  • [35] The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2 (VdSTS2)
    Yu, Yihe
    Guo, Dalong
    Li, Guirong
    Yang, Yingjun
    Zhang, Guohai
    Li, Shaohua
    Liang, Zhenchang
    BMC PLANT BIOLOGY, 2019, 19 (01)
  • [36] Soybean flower-specific R2R3-MYB transcription factor gene GmMYB108 induces anthocyanin production in Arabidopsis thaliana
    Ju Yeon Moon
    Saet Buyl Lee
    Yu Jeong Jeong
    Gah-Hyun Lim
    Gilok Shin
    Man-Soo Choi
    Jeong Ho Kim
    Ki Hun Park
    Jiyoung Lee
    Jae Cheol Jeong
    Cha Young Kim
    Applied Biological Chemistry, 67
  • [37] A R2R3-MYB transcription factor, FeR2R3-MYB, positively regulates anthocyanin biosynthesis and drought tolerance in common buckwheat (Fagopyrum esculentum)
    Luo, Yirou
    Xu, Xiaoyu
    Yang, Lanfeng
    Zhu, Xudong
    Du, Yingbiao
    Fang, Zhengwu
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 217
  • [38] Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis
    Li, X. W.
    Wang, Y.
    Yan, F.
    Li, J. W.
    Zhao, Y.
    Zhao, X.
    Zhai, Y.
    Wang, Q. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [39] Soybean flower-specific R2R3-MYB transcription factor gene GmMYB108 induces anthocyanin production in Arabidopsis thaliana
    Moon, Ju Yeon
    Lee, Saet Buyl
    Jeong, Yu Jeong
    Lim, Gah-Hyun
    Shin, Gilok
    Choi, Man-Soo
    Kim, Jeong Ho
    Park, Ki Hun
    Lee, Jiyoung
    Jeong, Jae Cheol
    Kim, Cha Young
    APPLIED BIOLOGICAL CHEMISTRY, 2024, 67 (01)
  • [40] Jasmonate-Inducible R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis and Stamen Development in Capsicum
    Sun, Binmei
    Zhu, Zhangsheng
    Chen, Chengjie
    Chen, Guoju
    Cao, Bihao
    Chen, Changming
    Lei, Jianjun
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (39) : 10891 - 10903