An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean

被引:125
作者
Chu, Shanshan [1 ,2 ]
Wang, Jiao [1 ]
Zhu, Ying [1 ]
Liu, Shulin [3 ]
Zhou, Xiaoqiong [1 ]
Zhang, Huairen [1 ]
Wang, Chun-e [4 ]
Yang, Wenming [1 ]
Tian, Zhixi [3 ]
Cheng, Hao [1 ]
Yu, Deyue [1 ]
机构
[1] Nanjing Agr Univ, Natl Ctr Soybean Improvement, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing, Jiangsu, Peoples R China
[2] Henan Agr Univ, Dept Agron, Zhengzhou, Henan, Peoples R China
[3] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Cell & Chromosome Engn, Beijing, Peoples R China
[4] Jiujiang Univ, Coll Pharm & Life Sci, Jiujiang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
GENOME-WIDE ASSOCIATION; PHENYLALANINE AMMONIA-LYASE; GLYCINE-MAX; DROUGHT TOLERANCE; AGRONOMIC TRAITS; GENE; EXPRESSION; ACCUMULATION; RESISTANCE; DEFENSE;
D O I
10.1371/journal.pgen.1006770
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L.) Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS), we identified 28 single nucleotide polymorphisms (SNPs) that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5'-untranslated region (5'-UTR) of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2) and CHS8 (chalcone synthase 8) gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean.
引用
收藏
页数:26
相关论文
共 76 条
[1]   Colocalization of L-phenylalanine ammonia-lyase and cinnarnate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis [J].
Achnine, L ;
Blancaflor, EB ;
Rasmussen, S ;
Dixon, RA .
PLANT CELL, 2004, 16 (11) :3098-3109
[2]   The nature and utility of the phytoestrogens: a review of the evidence [J].
Albertazzi, P ;
Purdie, DW .
MATURITAS, 2002, 42 (03) :173-185
[3]   Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis [J].
Aoki, T ;
Akashi, T ;
Ayabe, S .
JOURNAL OF PLANT RESEARCH, 2000, 113 (1112) :475-488
[4]   Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J].
Atwell, Susanna ;
Huang, Yu S. ;
Vilhjalmsson, Bjarni J. ;
Willems, Glenda ;
Horton, Matthew ;
Li, Yan ;
Meng, Dazhe ;
Platt, Alexander ;
Tarone, Aaron M. ;
Hu, Tina T. ;
Jiang, Rong ;
Muliyati, N. Wayan ;
Zhang, Xu ;
Amer, Muhammad Ali ;
Baxter, Ivan ;
Brachi, Benjamin ;
Chory, Joanne ;
Dean, Caroline ;
Debieu, Marilyne ;
de Meaux, Juliette ;
Ecker, Joseph R. ;
Faure, Nathalie ;
Kniskern, Joel M. ;
Jones, Jonathan D. G. ;
Michael, Todd ;
Nemri, Adnane ;
Roux, Fabrice ;
Salt, David E. ;
Tang, Chunlao ;
Todesco, Marco ;
Traw, M. Brian ;
Weigel, Detlef ;
Marjoram, Paul ;
Borevitz, Justin O. ;
Bergelson, Joy ;
Nordborg, Magnus .
NATURE, 2010, 465 (7298) :627-631
[5]   TASSEL: software for association mapping of complex traits in diverse samples [J].
Bradbury, Peter J. ;
Zhang, Zhiwu ;
Kroon, Dallas E. ;
Casstevens, Terry M. ;
Ramdoss, Yogesh ;
Buckler, Edward S. .
BIOINFORMATICS, 2007, 23 (19) :2633-2635
[6]   Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway [J].
Burbulis, IE ;
Winkel-Shirley, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12929-12934
[7]   Evolutionary study of the isoflavonoid pathway based on multiple copies analysis in soybean [J].
Chu, Shanshan ;
Wang, Jiao ;
Cheng, Hao ;
Yang, Qing ;
Yu, Deyue .
BMC GENETICS, 2014, 15
[8]   Isoflavonoid biosynthesis and accumulation in developing soybean seeds [J].
Dhaubhadel, S ;
McGarvey, BD ;
Williams, R ;
Gijzen, M .
PLANT MOLECULAR BIOLOGY, 2003, 53 (06) :733-743
[9]   Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds [J].
Dhaubhadel, Sangeeta ;
Gijzen, Mark ;
Moy, Pat ;
Farhangkhoee, Mana .
PLANT PHYSIOLOGY, 2007, 143 (01) :326-338
[10]   Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana [J].
Ding, Zhenhua ;
Li, Shiming ;
An, Xueli ;
Liu, Xin ;
Qin, Huanju ;
Wang, Damen .
JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (01) :17-29