Which fMRI clustering gives good brain parcellations?

被引:229
作者
Thirion, Bertrand [1 ,2 ]
Varoquaux, Gael [1 ,2 ]
Dohmatob, Elvis [1 ,2 ]
Poline, Jean-Baptiste [2 ,3 ]
机构
[1] Inst Rech Informat Automat, Parietal Project Team, F-91893 Orsay, France
[2] Commissariat Energie Atom & Aux Energies Alterna, DSV, Neurospin, Gif Sur Yvette, France
[3] Univ Calif Berkeley, Henry H Wheeler Jr Brain Imaging Ctr, Berkeley, CA 94720 USA
关键词
functional neuroimaging; brain atlas; clustering; model selection; cross-validation; group studies; HUMAN CEREBRAL-CORTEX; PROBABILISTIC ATLAS; CONNECTIVITY; PATTERNS; SYSTEM; SPACE; MODEL;
D O I
10.3389/fnins.2014.00167
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Analysis and interpretation of neuroimaging data often require one to divide the brain into a number of regions, or parcels, with homogeneous characteristics, be these regions defined in the brain volume or on the cortical surface. While predefined brain atlases do not adapt to the signal in the individual subject images, parcellation approaches use brain activity (e.g., found in some functional contrasts of interest) and clustering techniques to define regions with some degree of signal homogeneity. In this work, we address the question of which clustering technique is appropriate and how to optimize the corresponding model. We use two principled criteria: goodness of fit (accuracy), and reproducibility of the parcellation across bootstrap samples. We study these criteria on both simulated and two task-based functional Magnetic Resonance Imaging datasets for the Ward, spectral and k-means clustering algorithms. We show that in general Ward's clustering performs better than alternative methods with regard to reproducibility and accuracy and that the two criteria diverge regarding the preferred models (reproducibility leading to more conservative solutions), thus deferring the practical decision to a higher level alternative, namely the choice of a trade-off between accuracy and stability.
引用
收藏
页数:13
相关论文
共 54 条
[1]  
Abraham A., 2013, MICCAI
[2]   Function in the human connectome: Task-fMRI and individual differences in behavior [J].
Barch, Deanna M. ;
Burgess, Gregory C. ;
Harms, Michael P. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. ;
Corbetta, Maurizio ;
Glasser, Matthew F. ;
Curtiss, Sandra ;
Dixit, Sachin ;
Feldt, Cindy ;
Nolan, Dan ;
Bryant, Edward ;
Hartley, Tucker ;
Footer, Owen ;
Bjork, James M. ;
Poldrack, Russ ;
Smith, Steve ;
Johansen-Berg, Heidi ;
Snyder, Abraham Z. ;
Van Essen, David C. .
NEUROIMAGE, 2013, 80 :169-189
[3]  
Blumensath T, 2012, LECT NOTES COMPUT SC, V7511, P188, DOI 10.1007/978-3-642-33418-4_24
[4]   The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations [J].
Bohland, Jason W. ;
Bokil, Hemant ;
Allen, Cara B. ;
Mitra, Partha P. .
PLOS ONE, 2009, 4 (09)
[5]  
Chaari L, 2012, LECT NOTES COMPUT SC, V7512, P180, DOI 10.1007/978-3-642-33454-2_23
[6]  
Chen HB, 2012, LECT NOTES COMPUT SC, V7512, P297, DOI [10.1109/TMI.2013.2259248, 10.1007/978-3-642-33454-2_37]
[7]   Is There One DLPFC in Cognitive Action Control? Evidence for Heterogeneity From Co-Activation-Based Parcellation [J].
Cieslik, Edna C. ;
Zilles, Karl ;
Caspers, Svenja ;
Roski, Christian ;
Kellermann, Tanja S. ;
Jakobs, Oliver ;
Langner, Robert ;
Laird, Angela R. ;
Fox, Peter T. ;
Eickhoff, Simon B. .
CEREBRAL CORTEX, 2013, 23 (11) :2677-2689
[8]   Defining functional areas in individual human brains using resting functional connectivity MRI [J].
Cohen, Alexander L. ;
Fair, Damien A. ;
Dosenbach, Nico U. F. ;
Miezin, Francis M. ;
Dierker, Donna ;
Van Essen, David C. ;
Schlaggar, Bradley L. ;
Petersen, Steven E. .
NEUROIMAGE, 2008, 41 (01) :45-57
[9]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[10]  
Da Mota B., 2013, MICCAI