Hop Independent Sets in Graphs

被引:13
作者
Hassan, Javier A. [1 ]
Canoy, Sergio R. [1 ]
Aradais, Alkajim A. [2 ]
机构
[1] MSU Iligan Inst Technol, Ctr Graph Theory Algebra & Anal PRISM, Dept Math & Stat, Coll Sci & Math, Iligan 9200, Philippines
[2] Mindanao State Univ TCTO, Coll Educ, Integrated Lab Sch, Tawi Tawi, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2022年 / 15卷 / 02期
关键词
locating; stable; domination; join; corona; DOMINATION;
D O I
10.29020/nybg.ejpam.v15i2.4350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an undirected graph with vertex and edge sets V (G) and E(G), respectively. A set S subset of V (G) is a hop independent set of G if any two distinct vertices in S are not at a distance two from each other, that is, d(G) (v, omega) not equal 2 for any distinct vertices v, w is an element of S. The maximum cardinality of a hop independent set of G, denoted by alpha(h) (G), is called the hop independence number of G. In this paper, we show that the absolute difference of the independence number and the hop independence number of a graph can be made arbitrarily large. Furthermore, we determine the hop independence numbers of some graphs including those resulting from some binary operations of graphs.
引用
收藏
页码:467 / 477
页数:11
相关论文
共 9 条
  • [1] Bounds on the hop domination number of a tree
    Ayyaswamy, S. K.
    Krishnakumari, B.
    Natarajan, C.
    Venkatakrishnan, Y. B.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04): : 449 - 455
  • [2] Canoy Jr S., 2013, NRCP Research Journal, V13, P1
  • [3] Canoy Jr S., 2015, Tamkang Journal of Mathematics, V46, P51
  • [4] Locating-Hop Domination in Graphs
    Canoy Jr, Sergio R.
    Salasalan, Gemma P.
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (01): : 193 - 204
  • [5] Hop Dominating Sets in Graphs Under Binary Operations
    Canoy, Sergio R., Jr.
    Mollejon, Reynaldo, V
    Canoy, John Gabriel E.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1455 - 1463
  • [6] Canoy SR, 2017, ADV APPL DISCRET MAT, V18, P179, DOI 10.17654/DM018020179
  • [7] On 2-Step and Hop Dominating Sets in Graphs
    Henning, Michael A.
    Rad, Nader Jafari
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (04) : 913 - 927
  • [8] Hop Domination in Graphs-II
    Natarajan, C.
    Ayyaswamy, S. K.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02): : 187 - 199
  • [9] Global Hop Domination Numbers of Graphs
    Salasalan, Gemma P.
    Canoy, Sergio R., Jr.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (01): : 112 - 125