First passage time of filtered Poisson process with exponential shape function

被引:16
作者
Novikov, A
Melchers, RE
Shinjikashvili, E
Kordzakhia, N
机构
[1] Univ Technol Sydney, Dept Math Sci, Sydney, NSW 2007, Australia
[2] Univ Newcastle, Dept Civil Engn, Newcastle, NSW 2308, Australia
[3] Commonwealth Bank Australia, Quantitat Anal Risk Management, Sydney, NSW 1155, Australia
基金
澳大利亚研究理事会;
关键词
first passage times; laplace transform; martingales; integro-differential equations; filtered Poisson process; Omstein-Uhlenbeck process;
D O I
10.1016/j.probengmech.2004.04.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Solving some integro-differential equation we find the Laplace transform of the first passage time for filtered Poisson process generated by pulses with uniform or exponential distributions. Also, the martingale technique is applied for approximations of expectations and distributions of the first passage times. The approximations accuracy is verified with the help of Monte-Carlo simulations. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 17 条
  • [1] [Anonymous], 1998, FINANCE STOCH, DOI DOI 10.1007/s007800050045
  • [2] [Anonymous], TEOR VEROYATN PRIMEN
  • [3] BARNDORFFNIELSE.OE, 2001, THEORY APPL, P283
  • [4] The generalized Ornstein-Uhlenbeck process
    Caceres, MO
    Budini, AA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8427 - 8444
  • [5] INEQUALITIES FOR THE OVERSHOOT
    Chang, Joseph T.
    [J]. ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) : 1223 - 1233
  • [6] Chang JT, 1997, ANN PROBAB, V25, P787
  • [7] Grigoriu M, 1995, Applied non-gaussian processes: examples, theory, simulation, linear random vibration, and MATLAB solutions
  • [8] HADJIEV D, 1983, LECT NOTES MATH, V1123, P80
  • [9] Jacod J., 2003, LIMIT THEOREMS STOCH
  • [10] On hitting times for compound Poisson dams with exponential jumps and linear release rate
    Kella, O
    Stadje, W
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (03) : 781 - 786