Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106-115

被引:22
作者
Arcos-Lopez, Trinidad [1 ]
Qayyum, Munzarin [2 ]
Rivillas-Acevedo, Lina [1 ]
Miotto, Marco C. [4 ,5 ]
Grande-Aztatzi, Rafael [1 ]
Fernandez, Claudio O. [4 ,5 ]
Hedman, Britt [3 ]
Hodgson, Keith O. [2 ,3 ]
Vela, Alberto [1 ]
Solomon, Edward I. [2 ,3 ]
Quintanar, Liliana [1 ]
机构
[1] CINVESTAV, Dept Quim, Gustavo A Madero 07360, Mexico
[2] Stanford Univ, Dept Chem, Stanford, CA 94395 USA
[3] Stanford Univ, SLAC, SSRL, Menlo Pk, CA 94025 USA
[4] Univ Nacl Rosario Ocampo & Esmeralda, UNR MPIbpC, MPLbioR, Max Planck Lab Struct Biol Chem & Mol Biophys Ros, S2002LRK Rosario, Buenos Aires, DF, Argentina
[5] Univ Nacl Rosario Ocampo & Esmeralda, UNR CONICET, IIDEFAR, Inst Invest Descubrimiento Farmacos Rosario, S2002LRK Rosario, Buenos Aires, DF, Argentina
基金
美国国家卫生研究院;
关键词
METHIONINE SULFOXIDE REDUCTASE; VALENCE SUM ANALYSIS; LIGAND BOND LENGTHS; REORGANIZATION ENERGY; COPPER-BINDING; AMYLOIDOGENIC FRAGMENT; HYDROGEN-PEROXIDE; ELECTRON-TRANSFER; FULL-LENGTH; COORDINATION;
D O I
10.1021/acs.inorgchem.5b02794
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The ability of the cellular prion protein (PrPC) to bind copper in vivo points to a physiological role for PrPC in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrPC. Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting Cu-I and Cu-II binding properties. We have evaluated Cu-I coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. Cu-I coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand in the range of pH 5-8, both methionine (Met) residues bind to Cu-I, forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the Chemical environment, such as those occurring during endocytosis of PrPC (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrPC to maintain the bound Cu-I ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant Cu-I-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially Oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrPC. This study provides further insight into the Cu-I coordination properties of His111 in human PrPC and the molecular mechanism of oxygen activation by this site.
引用
收藏
页码:2909 / 2922
页数:14
相关论文
共 93 条
  • [1] [Anonymous], 2007, HDB NEUROCHEMISTRY M, P352
  • [2] A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites
    Arnesano, F
    Banci, L
    Bertini, I
    Mangani, S
    Thompsett, AR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) : 3814 - 3819
  • [3] Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy
    Aronoff-Spencer, E
    Burns, CS
    Avdievich, NI
    Gerfen, GJ
    Peisach, J
    Antholine, WE
    Ball, HL
    Cohen, FE
    Prusiner, SB
    Millhauser, GL
    [J]. BIOCHEMISTRY, 2000, 39 (45) : 13760 - 13771
  • [4] The amyloidogenic region of the human prion protein contains a high affinity (Met)2(His)2 Cu(I) binding site
    Badrick, Alison C.
    Jones, Christopher E.
    [J]. JOURNAL OF INORGANIC BIOCHEMISTRY, 2009, 103 (08) : 1169 - 1175
  • [5] Prion protein protects human neurons against Bax-mediated apoptosis
    Bounhar, Y
    Zhang, Y
    Goodyer, CG
    LeBlanc, A
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) : 39145 - 39149
  • [6] Methionine oxidation interferes with conversion of the prion protein into the fibrillar proteinase K-resistant conformation
    Breydo, L
    Bocharova, OV
    Makarava, N
    Salnikov, VV
    Anderson, M
    Baskakov, IV
    [J]. BIOCHEMISTRY, 2005, 44 (47) : 15534 - 15543
  • [7] Normal prion protein has an activity like that of superoxide dismutase
    Brown, DR
    Wong, BS
    Hafiz, F
    Clive, C
    Haswell, SJ
    Jones, IM
    [J]. BIOCHEMICAL JOURNAL, 1999, 344 : 1 - 5
  • [8] BOND-VALENCE PARAMETERS OBTAINED FROM A SYSTEMATIC ANALYSIS OF THE INORGANIC CRYSTAL-STRUCTURE DATABASE
    BROWN, ID
    ALTERMATT, D
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1985, 41 (AUG): : 244 - 247
  • [9] Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi
    Brown, LR
    Harris, DA
    [J]. JOURNAL OF NEUROCHEMISTRY, 2003, 87 (02) : 353 - 363
  • [10] Copper coordination in the full-length, recombinant prion protein
    Burns, CS
    Aronoff-Spencer, E
    Legname, G
    Prusiner, SB
    Antholine, WE
    Gerfen, GJ
    Peisach, J
    Millhauser, GL
    [J]. BIOCHEMISTRY, 2003, 42 (22) : 6794 - 6803