Counting periodic solutions of the forced pendulum equation

被引:8
作者
Ortega, R [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Math & Astron, E-18071 Granada, Spain
关键词
pendulum; zeros; holomorphic functions;
D O I
10.1016/S0362-546X(99)00169-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complex analysis, called the Jensen's inequality, was applied with the theory of conformal mappings to the forced pendulum equation. The result is an upper estimate on the number of periodic solutions. Theorems are presented to prove the method.
引用
收藏
页码:1055 / 1062
页数:8
相关论文
共 8 条
[1]  
HERMAN MR, 1986, COURBES INVARIANTES, V2
[2]   Counting real zeros of analytic functions satisfying linear ordinary differential equations [J].
IlYashenko, Y ;
Yakovenko, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (01) :87-105
[3]  
LAVRENTIEV M, METHODES THEORIE FON
[4]  
Markushevich A. I., 1965, THEORY FUNCTIONS COM, VII
[5]  
Mawhin J., 1998, P C EQ, V9, P115
[6]   A forced pendulum equation with many periodic solutions [J].
Ortega, R .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (03) :861-876
[7]   On the structure of the solution set of forced pendulum-type equations [J].
Serra, E ;
Tarallo, M ;
Terracini, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) :189-208
[8]   ON THE NUMBER OF SOLUTIONS FOR THE FORCED PENDULUM EQUATION [J].
TARANTELLO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :79-93