Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering

被引:194
作者
Tsakmakidis, K. L. [1 ]
Shen, L. [2 ]
Schulz, S. A. [1 ,8 ,9 ]
Zheng, X. [3 ]
Upham, J. [1 ]
Deng, X. [2 ]
Altug, H. [4 ]
Vakakis, A. F. [5 ]
Boyd, R. W. [1 ,6 ,7 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Jiangxi, Peoples R China
[3] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Ecole Polytech Fed Lausanne, Bioengn Dept, CH-1015 Lausanne, Switzerland
[5] Univ Illinois, Dept Mech Sci & Engn, 1206 West Green St, Urbana, IL 61801 USA
[6] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[7] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[8] Cork Inst Technol, Ctr Adv Photon & Proc Anal, Cork, Ireland
[9] Tyndall Natl Inst, Cork, Ireland
基金
中国国家自然科学基金;
关键词
SURFACE MAGNETOPLASMONS; SLOW LIGHT; INVISIBILITY;
D O I
10.1126/science.aam6662
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Delta omega, can interact with a wave over only a constrained time period Delta t inversely proportional to the bandwidth (Delta t-Delta w similar to 2 pi). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this "fundamental" limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.
引用
收藏
页码:1260 / 1264
页数:5
相关论文
共 33 条
[1]  
[Anonymous], LASERS
[2]   Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited] [J].
Boyd, Robert W. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (12) :A38-A44
[3]   Controlling the Velocity of Light Pulses [J].
Boyd, Robert W. ;
Gauthier, Daniel J. .
SCIENCE, 2009, 326 (5956) :1074-1077
[4]   Maximum time delay achievable on propagation through a slow-light medium [J].
Boyd, RW ;
Gauthier, DJ ;
Gaeta, AL ;
Willner, AE .
PHYSICAL REVIEW A, 2005, 71 (02)
[5]   THEORY OF SURFACE MAGNETOPLASMONS IN SEMICONDUCTORS [J].
BRION, JJ ;
BURSTEIN, E ;
WALLIS, RF ;
HARTSTEI.A .
PHYSICAL REVIEW LETTERS, 1972, 28 (22) :1455-&
[6]  
Dutra S. M., 2005, CAVITY QUANTUM ELECT, P34
[7]  
GREEN EI, 1955, AM SCI, V43, P584
[8]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[9]   Light speed reduction to 17 metres per second in an ultracold atomic gas [J].
Hau, LV ;
Harris, SE ;
Dutton, Z ;
Behroozi, CH .
NATURE, 1999, 397 (6720) :594-598
[10]  
Haus H. A., 1984, WAVES FIELDS OPTOELE