Cyst segmentation on kidney tubules by means of U-Net deep-learning models

被引:2
作者
Monaco, Simone [1 ]
Bussola, Nicole [2 ,3 ]
Butto, Sara [4 ]
Sona, Diego [2 ]
Apiletti, Daniele [1 ]
Jurman, Giuseppe [2 ]
Viola, Elisa [5 ]
Chierici, Marco [2 ]
Xinaris, Christodoulos [4 ]
Viola, Vincenzo [5 ]
机构
[1] Politecn Torino, DAUIN, Turin, Italy
[2] Fdn Bruno Kessler, Trento, Italy
[3] Univ Trento, CIBIO, Trento, Italy
[4] Ist Ric Farmacol Mario Negri IRCCS, Bergamo, Italy
[5] Xelion Tech, Milan, Italy
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
关键词
Deep Learning; Medical Image Segmentation; Kidney disease;
D O I
10.1109/BigData52589.2021.9671669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most widespread genetic disorders affecting the kidney. Nevertheless, there is still no cure for ADPKD. Domain experts test the effectiveness of different treatments by investigating how they can reduce the number and dimension of cysts on kidney tissues. Image processing of the microscope acquisitions is then an expensive but necessary operation currently performed by operators to determine and compare cyst size and quantity. In this work, we propose a deep learning algorithm for fast and accurate cysts detection in sequential 2-D images. Experiments on 507 RGB immunofluorescence images of 8 kidney tubules show that the proposed U-Net-based deep-learning solution can automatically segment images with increasing performance at larger cyst dimensions (Pr > 0.8, Re > 0.75 for cysts larger than 32 mu m(2)). Such a reliable method performing an accurate cyst segmentation can be a valid support for researchers in optimising the effort to find new effective treatments for ADPKD.
引用
收藏
页码:3923 / 3926
页数:4
相关论文
共 21 条
[1]   Growth Pattern of Kidney Cyst Number and Volume in Autosomal Dominant Polycystic Kidney Disease [J].
Bae, Kyongtae T. ;
Zhou, Wen ;
Shen, Chengli ;
Landsittel, Douglas P. ;
Wu, Zhiyuan ;
Tao, Cheng ;
Chapman, Arlene B. ;
Torres, Vicente E. ;
Yu, Alan S. L. ;
Mrug, Michal ;
Bennett, William M. ;
Harris, Peter C. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 14 (06) :823-833
[2]   Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery [J].
Benedetti, Valentina ;
Brizi, Valerio ;
Guida, Patrizia ;
Tomasoni, Susanna ;
Ciampi, Osele ;
Angeli, Elena ;
Valbusa, Ugo ;
Benigni, Ariela ;
Remuzzi, Giuseppe ;
Xinaris, Christodoulos .
EBIOMEDICINE, 2018, 33 :253-268
[3]   Polycystic kidney disease [J].
Bergmann, Carsten ;
Guay-Woodford, Lisa M. ;
Harris, Peter C. ;
Horie, Shigeo ;
Peters, Dorien J. M. ;
Torres, Vicente E. .
NATURE REVIEWS DISEASE PRIMERS, 2018, 4
[4]   CystAnalyser: A new software tool for the automatic detection and quantification of cysts in Polycystic Kidney and Liver Disease, and other cystic disorders [J].
Cordido, Adrian ;
Cernadas, Eva ;
Fernandez-Delgado, Manuel ;
Garcia-Gonzalez, Miguel A. .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (10)
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]   Deep learning in digital pathology image analysis: a survey [J].
Deng, Shujian ;
Zhang, Xin ;
Yan, Wen ;
Chang, Eric I-Chao ;
Fan, Yubo ;
Lai, Maode ;
Xu, Yan .
FRONTIERS OF MEDICINE, 2020, 14 (04) :470-487
[7]   Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells [J].
Dima, Alden A. ;
Elliott, John T. ;
Filliben, James J. ;
Halter, Michael ;
Peskin, Adele ;
Bernal, Javier ;
Kociolek, Marcin ;
Brady, Mary C. ;
Tang, Hai C. ;
Plant, Anne L. .
CYTOMETRY PART A, 2011, 79A (07) :545-559
[8]  
Dong K., 2021, NAT GENET, P2021
[9]   Semantic Instance Segmentation of Kidney Cysts in MR Images: A Fully Automated 3D Approach Developed Through Active Learning [J].
Gregory, Adriana V. ;
Anaam, Deema A. ;
Vercnocke, Andrew J. ;
Edwards, Marie E. ;
Torres, Vicente E. ;
Harris, Peter C. ;
Erickson, Bradley J. ;
Kline, Timothy L. .
JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) :773-787
[10]  
Heo B, 2020, ARXIV PREPRINT ARXIV