Environment Driven Underwater Camera-IMU Calibration for Monocular Visual-Inertial SLAM

被引:0
|
作者
Gu, Changjun [1 ,2 ]
Cong, Yang [1 ]
Sun, Gan [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Inst Robot & Intelligent Mfg, State Key Lab Robot, Shenyang, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2019年
关键词
VERSATILE;
D O I
10.1109/icra.2019.8793577
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most state-of-the-art underwater vision systems are calibrated manually in shallow water and used in open seas without changing. However, the refractivity of the water is adaptively changed depending on the salinity, temperature, depth or other underwater environmental indexes, which inevitably generate the calibration errors and induces incorrectness e.g., for underwater Simultaneously Localization and Mapping (SLAM). To address this issue, in this paper, we propose a new underwater Camera-Inertial Measurement Unit (IMU) calibration model, which just needs to be calibrated once in the air, and then both the intrinsic parameters and extrinsic parameters between the camera and IMU could be automatically calculated depending on the environment indexes. To our best knowledge, this is the first work to consider the underwater Camera-IMU calibration via environmental indexes. We also build a verification platform to validate the effectiveness of our proposed method on real experiments, and use it for underwater monocular Visual-Inertial SLAM.
引用
收藏
页码:2405 / 2411
页数:7
相关论文
共 50 条
  • [1] Monocular Visual-Inertial SLAM with Camera-IMU Extrinsic Automatic Calibration and Online Estimation
    Pan, Linhao
    Tian, Fuqing
    Ying, Wenjian
    She, Bo
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT IV, 2019, 11743 : 706 - 721
  • [2] Online Initialization and Automatic Camera-IMU Extrinsic Calibration for Monocular Visual-Inertial SLAM
    Huang, Weibo
    Liu, Hong
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 5182 - 5189
  • [3] Monocular Visual-Inertial Fusion with Online Initialization and Camera-IMU Calibration
    Yang, Zhenfei
    Shen, Shaojie
    2015 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY, AND RESCUE ROBOTICS (SSRR), 2015,
  • [4] Visual-inertial state estimation with camera and camera-IMU calibration
    Arbabmir, Mohammadvali
    Ebrahimi, Masoud
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 120
  • [5] Monocular Visual-Inertial State Estimation With Online Initialization and Camera-IMU Extrinsic Calibration
    Yang, Zhenfei
    Shen, Shaojie
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2017, 14 (01) : 39 - 51
  • [6] A novel visual-inertial Monocular SLAM
    Yue, Xiaofeng
    Zhang, Wenjuan
    Xu, Li
    Liu, JiangGuo
    MIPPR 2017: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2018, 10608
  • [7] Monocular Visual-Inertial SLAM With IMU-Aided Hybrid Line Matching
    Zha, Gongpu
    Guan, Peiyu
    Cao, Zhiqiang
    Sun, Ting
    Yu, Shijie
    IEEE SENSORS LETTERS, 2024, 8 (09)
  • [8] Modeling Varying Camera-IMU Time Offset in Optimization-Based Visual-Inertial Odometry
    Ling, Yonggen
    Bao, Linchao
    Jie, Zequn
    Zhu, Fengming
    Li, Ziyang
    Tang, Shanmin
    Liu, Yongsheng
    Liu, Wei
    Zhang, Tong
    COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 : 491 - 507
  • [9] Stationary Detector for Monocular Visual-Inertial SLAM
    Guillemard, Richard
    Helenon, Francois
    Petit, Bruno
    Gay-Bellile, Vincent
    Carrier, Mathieu
    2019 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2019,
  • [10] Visual-Inertial Monocular SLAM With Map Reuse
    Mur-Artal, Raul
    Tardos, Juan D.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 796 - 803