On the evolution equation of longitudinal shock waves in elastic media with weak inhomogeneity

被引:0
作者
Ivanova, Yu. E. [1 ]
Ragozina, V. E. [1 ]
机构
[1] Russian Acad Sci, Inst Automat & Control Proc, Far East Branch, Vladivostok 690041, Russia
基金
俄罗斯基础研究基金会;
关键词
nonlinear elastic compressible medium; continuum inhomogeneity; nonstationary problems; shock waves; perturbation method; evolution equations;
D O I
10.3103/S0025654414050100
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Several problems of shock deformation in a nonlinearly elastic compressible medium with inhomogeneous properties are considered. The method of matched asymptotic expansions is used to show that the weak inhomogeneity and a certain relation between its order and the model nonlinearity order lead to different types of evolution quasilinear wave equations in regions far from the loaded boundary. The most interesting version of the arising evolution equation was obtained by joint change of the spatial coordinate scale and the related type of the semicharacteristic variable. The solution ideas are illustrated by an example of plane longitudinal shock wave in a medium with inhomogeneity in the wave motion direction. The obtained evolution equations become the well-known Cole-Hopf equation in the limit when passing to the isotropic medium.
引用
收藏
页码:587 / 595
页数:9
相关论文
共 17 条
[1]   NOTE ON WAVE PROPAGATION IN LINEARLY VISCOELASTIC MEDIA [J].
ACHENBACH, JD ;
REDDY, DP .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1967, 18 (01) :141-+
[2]  
[Anonymous], PERTURBATION METHODS
[3]  
[Anonymous], 1972, PERTURBATION METHODS
[4]  
[Anonymous], 1973, CONTINUUM MECH
[5]  
Babicheva L. A., 1973, PMM-J APPL MATH MEC, V37, P145
[6]  
Bland D.R., 1972, Nonlinear dynamic elasticity
[7]   The Evolutionary Equation for Wave Processes of the Shift Deformation [J].
Burenin, A. A. ;
Ragozina, V. E. ;
Ivanova, Yu. E. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2009, 9 (04) :14-24
[8]  
Burenin A. A., 1990, Journal of Applied Mechanics and Technical Physics, V31, P807, DOI 10.1007/BF00854189
[9]  
BURENIN AA, 1978, PMM-J APPL MATH MEC+, V42, P758, DOI 10.1016/0021-8928(78)90019-9
[10]   ON AXISYMMETRIC MOTION OF AN INCOMPRESSIBLE ELASTIC MEDIUM UNDER IMPACT LOADING [J].
Ivanova, Yu. E. ;
Ragozina, V. E. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2006, 47 (06) :892-898