Operator scaling stable random fields

被引:104
作者
Bierme, Hermine
Meerschaert, Mark M. [1 ]
Scheffler, Hans-Peter
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
[3] Univ Paris 05, MAP5, F-75270 Paris 06, France
基金
美国国家科学基金会;
关键词
fractional random fields; operator scaling;
D O I
10.1016/j.spa.2006.07.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A scalar valued random field (X(x)}(x is an element of Rd) is called operator-scaling if for some d x d matrix E with positive real parts of the eigenvalues and some H > 0 we have {X(c(E)x)}(x is an element of Rd) =f.d. {c(H) X (x)}(x is an element of Rd) for all c > 0, where =(f.d). denotes equality of all finite-dimensional marginal distributions. We present a moving average and a harmonizable representation of stable operator scaling random fields by utilizing so called E-homogeneous functions phi, satisfying phi(c(E)x) = c phi(x). These fields also have stationary increments and are stochastically continuous. In the Gaussian case, critical Holder-exponents and the Hausdorff-dimension of the sample paths are also obtained. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:312 / 332
页数:21
相关论文
共 21 条
[1]  
Abry P., 2002, LOIS ECHELLE FRACTAL, V1
[2]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[3]  
[Anonymous], 2002, SELF SIMILAR PROCESS
[4]   Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets [J].
Ayache, A ;
Xiao, YM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (04) :407-439
[5]  
Ayache A, 2004, REV MAT IBEROAM, V20, P395
[6]   A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series [J].
Ayache, A ;
Roueff, F .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (01) :75-82
[7]   Local self-similarity and the Hausdorff dimension [J].
Benassi, A ;
Cohen, S ;
Istas, J .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) :267-272
[8]   Aquifer operator scaling and the effect on solute mixing and dispersion [J].
Benson, DA ;
Meerschaert, MM ;
Baeumer, B ;
Scheffler, HP .
WATER RESOURCES RESEARCH, 2006, 42 (01)
[9]   Anisotropic analysis of some Gaussian models [J].
Bonami, A ;
Estrade, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (03) :215-236
[10]   Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods [J].
Caccia, DC ;
Percival, D ;
Cannon, MJ ;
Raymond, G ;
Bassingthwaighte, JB .
PHYSICA A, 1997, 246 (3-4) :609-632