Existence of solutions for a one dimensional p-laplacian on time-scales

被引:76
作者
Anderson, D
Avery, R
Henderson, J [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Concordia Coll, Dept Math, Moorhead, MN 56562 USA
[3] Dakota State Univ, Coll Nat Sci, Madison, SD 57042 USA
关键词
fixed-point theorems; delta-nabla dynamic equation; one-dimensional p-Laplacian; multiple solutions; cone;
D O I
10.1080/10236190410001731416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of at least one positive solution to the time-scale, delta-nabla dynamic equation, (g(u(Delta)))(del) + c(t)f(u) = 0, with boundary conditions, u(a) - B-o (u(Delta)(nu)) = 0 and u(Delta)(b) = 0. Here, g(z) = \z\(p-2)z for p > 1, nu is an element of (a,b), f and c are left-dense continuous and B-o is a function "bounded" by two linear rays.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 35 条
[1]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[2]  
AGARWAL RP, 1999, POSITIVE SOLUTION
[3]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[4]   Solutions to second-order three-point problems on time scales [J].
Anderson, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (08) :673-688
[5]  
ANDERSON DR, 2002, INT J NONLIN DIFFERE, V7, P97
[6]  
ANDERSON DR, 2003, IN PRESS DYN SYST AP
[7]   NODAL PROPERTIES OF SOLUTIONS OF PARABOLIC EQUATIONS [J].
ANGENENT, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (02) :585-592
[8]  
[Anonymous], 1998, MSR HOT LINE
[9]  
ARONSON DG, 1983, T AM MATH SOC, V280, P351, DOI 10.2307/1999618
[10]   On Green's functions and positive solutions for boundary value problems on time scales [J].
Atici, FM ;
Guseinov, GS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :75-99