Modelling the spread of schistosomiasis in humans with environmental transmission

被引:12
|
作者
Ronoh, Marilyn [1 ]
Chirove, Faraimunashe [2 ]
Pedro, Sansao A. [3 ]
Tchamga, Milaine Sergine Seuneu [4 ]
Madubueze, Chinwendu Emilian [5 ]
Madubueze, Sunday C. [6 ]
Addawe, Joel [7 ]
Mwamtobe, Peter Mpasho [8 ]
Mbra, Kouassi Richard [9 ,10 ]
机构
[1] Univ Nairobi, Sch Math, Nairobi, Kenya
[2] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
[3] Univ Eduardo Mondlane, Dept Matemat & Informat, Maputo, Mozambique
[4] Univ Cape Town UCT, African Inst Math Sci AIMS, Rondebosch, South Africa
[5] Univ Agr Makurdi, Dept Math Stat Comp Sci, Makurdi, Nigeria
[6] Dalhatu Araf Specialist Hosp DASH, Lafia, Nigeria
[7] Univ Philippines Baguio, Dept Math & Comp Sci, Baguio, Philippines
[8] Malawi Univ Sci & Technol, Appl Studies Dept, Dept Math & Stat, Thyolo, Malawi
[9] Univ Felix Houphouet Boigny, Abidjan, Cote Ivoire
[10] Ctr Suisse Rech Sci Cote Ivoire, Abidjan, Cote Ivoire
关键词
Schistosomiasis; Humans; cercariae; Miracidia; Reproduction number and analysis; STRATEGIES; INFECTION; MANSONI;
D O I
10.1016/j.apm.2021.01.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although schistosomiasis containment campaigns have recorded substantial success in most developed countries, sub-Saharan Africa still suffers greatly under the burden of the disease. A basic mathematical model to assess the impact of concomitant immunity in humans and environmental transmission of schistosomiasis disease progression is formulated. Mathematical analysis is carried out to establish the existence of the equilibrium points providing necessary conditions for their local and global stability. Numerical simulations are done to analyze the effects of environmental transmission and processes associated with development of concomitant immunity. Our results suggest that schistosomiasis burden is increased by direct and indirect contribution of individuals with concomitant immunity to the schistosomiasis infection chain, increasing the shedding of miracidia upto the development of cercariae promoting the growth of cercariae, increase in environmental transmission due to cercariae, reducing the clearance rate of cercariae and reducing the development of humans and non-human mammals escape mechanisms from cercariae attack. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 50 条
  • [31] Modelling the Role of Treatment, Public Health Education, and Chemical Control Strategies on Transmission Dynamics of Schistosomiasis
    Kamara, Timothy
    Byamukama, Michael
    Karuhanga, Martin
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [32] Water hyacinth and the transmission of schistosomiasis
    Coles, G. C.
    Kabatereine, N. B.
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2008, 102 (06) : 619 - 620
  • [33] Post-transmission schistosomiasis
    Giboda, M
    Bergquist, NR
    PARASITOLOGY TODAY, 1999, 15 (08): : 307 - 308
  • [34] Heterogeneity in schistosomiasis transmission dynamics
    Mari, Lorenzo
    Ciddio, Manuela
    Casagrandi, Renato
    Perez-Saez, Javier
    Bertuzzo, Enrico
    Rinaldo, Andrea
    Sokolow, Susanne H.
    De Leo, Giulio A.
    Gatto, Marino
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 432 : 87 - 99
  • [35] Schistosomiasis transmission and control in China
    Zou, Lan
    Ruan, Shigui
    ACTA TROPICA, 2015, 143 : 51 - 57
  • [36] TRANSMISSION DYNAMICS OF ENDEMIC SCHISTOSOMIASIS
    POLDERMAN, AM
    TROPICAL AND GEOGRAPHICAL MEDICINE, 1979, 31 (04): : 465 - 475
  • [37] Social and environmental transmission spread different sets of gut microbes in wild mice
    Raulo, Aura
    Buerkner, Paul-Christian
    Finerty, Genevieve E.
    Dale, Jarrah
    Hanski, Eveliina
    English, Holly M.
    Lamberth, Curt
    Firth, Josh A.
    Coulson, Tim
    Knowles, Sarah C. L.
    NATURE ECOLOGY & EVOLUTION, 2024, 8 (05) : 972 - 985
  • [38] Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands
    Lu Lu
    Reina S. Sikkema
    Francisca C. Velkers
    David F. Nieuwenhuijse
    Egil A. J. Fischer
    Paola A. Meijer
    Noortje Bouwmeester-Vincken
    Ariene Rietveld
    Marjolijn C. A. Wegdam-Blans
    Paulien Tolsma
    Marco Koppelman
    Lidwien A. M. Smit
    Renate W. Hakze-van der Honing
    Wim H. M. van der Poel
    Arco N. van der Spek
    Marcel A. H. Spierenburg
    Robert Jan Molenaar
    Jan de Rond
    Marieke Augustijn
    Mark Woolhouse
    J. Arjan Stegeman
    Samantha Lycett
    Bas B. Oude Munnink
    Marion P. G. Koopmans
    Nature Communications, 12
  • [39] Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands
    Lu, Lu
    Sikkema, Reina S.
    Velkers, Francisca C.
    Nieuwenhuijse, David F.
    Fischer, Egil A. J.
    Meijer, Paola A.
    Bouwmeester-Vincken, Noortje
    Rietveld, Ariene
    Wegdam-Blans, Marjolijn C. A.
    Tolsma, Paulien
    Koppelman, Marco
    Smit, Lidwien A. M.
    Hakze-van der Honing, Renate W.
    van der Poel, Wim H. M.
    van der Spek, Arco N.
    Spierenburg, Marcel A. H.
    Molenaar, Robert Jan
    de Rond, Jan
    Augustijn, Marieke
    Woolhouse, Mark
    Stegeman, J. Arjan
    Lycett, Samantha
    Munnink, Bas B. Oude
    Koopmans, Marion P. G.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking
    Panzner, Ursula
    PARASITOLOGIA, 2024, 4 (02): : 101 - 128