A posteriori error analysis for the Morley plate element with general boundary conditions

被引:24
作者
da Veiga, L. Beirao [3 ]
Niiranen, J. [1 ]
Stenberg, R. [2 ]
机构
[1] Aalto Univ, Dept Struct Engn & Bldg Technol, Helsinki 02015, Finland
[2] Aalto Univ, Inst Math, Helsinki 02015, Finland
[3] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
基金
芬兰科学院;
关键词
nonconforming finite elements; a posteriori error analysis; Morley plate element; Kirchhoff plate model; boundary conditions; adaptivity; C-0; FINITE-ELEMENTS; NONSMOOTH FUNCTIONS; INTERPOLATION; FAMILY;
D O I
10.1002/nme.2821
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces and analyses a local. residual-based a posteriori error indicator for the Morley finite element method of the biharmonic Kirchhoff plate bending problem. In the theoretical part of the paper, a recent approach presented by the authors for clamped boundaries is extended to general boundary conditions. The error indicator is proven to be both reliable and efficient. The numerical part of the paper presents a set of results on various benchmark computations with different kinds of domains and boundary conditions. These tests verify the reliability and efficiency of the error estimator and illustrate the robustness of the method for adaptive mesh refinements. Copyright (C) 2009 John Wiley & Sons. Ltd.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 31 条
[1]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies
[2]  
[Anonymous], 1991, HDB NUMERICAL ANAL
[3]  
[Anonymous], 1997, Numer. Methods Partial Differ. Equ., DOI DOI 10.1002/(SICI)1098-2426(199701)13:1<93::AID-NUM7>3.0.CO
[4]  
2-H
[5]  
[Anonymous], 1997, STUD MATH APPL
[6]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[7]  
Bacuta C., 2002, Recent progress in computational and applied PDEs (Zhangji- ajie, 2001), P1
[8]   A STUDY OF 3-NODE TRIANGULAR PLATE BENDING ELEMENTS [J].
BATOZ, JL ;
BATHE, KJ ;
HO, LW .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (12) :1771-1812
[9]   Formulation and evaluation of new triangular, quadrilateral, pentagonal and hexagonal discrete Kirchhoff plate/shell elements [J].
Batoz, JL ;
Zheng, CL ;
Hammadi, F .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (5-6) :615-630
[10]  
Blum H., 1980, Math. Methods Appl. Sci, V2, P556, DOI 10.1002/mma.1670020416